Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores

Author:

Bazin Lucie,Landais Amaelle,Capron Emilie,Masson-Delmotte ValérieORCID,Ritz CatherineORCID,Picard GhislainORCID,Jouzel Jean,Dumont MarieORCID,Leuenberger MarkusORCID,Prié Frédéric

Abstract

Abstract. Orbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using δ18Oatm, δO2⁄N2 and air content with different orbital targets, quantifying their uncertainties remains a challenge. Indeed, the exact processes linking variations of these parameters, measured in the air trapped in ice, to their orbital targets are not yet fully understood. Here, we provide new series of δO2∕N2 and δ18Oatm data encompassing Marine Isotopic Stage (MIS) 5 (between 100 and 160 ka) and the oldest part (340–800 ka) of the East Antarctic EPICA Dome C (EDC) ice core. For the first time, the measurements over MIS 5 allow an inter-comparison of δO2∕N2 and δ18Oatm records from three East Antarctic ice core sites (EDC, Vostok and Dome F). This comparison highlights some site-specific δO2∕N2 variations. Such an observation, the evidence of a 100 ka periodicity in the δO2∕N2 signal and the difficulty to identify extrema and mid-slopes in δO2∕N2 increase the uncertainty associated with the use of δO2∕N2 as an orbital tuning tool, now calculated to be 3–4 ka. When combining records of δ18Oatm and δO2∕N2 from Vostok and EDC, we find a loss of orbital signature for these two parameters during periods of minimum eccentricity (∼ 400 ka, ∼ 720–800 ka). Our data set reveals a time-varying offset between δO2∕N2 and δ18Oatm records over the last 800 ka that we interpret as variations in the lagged response of δ18Oatm to precession. The largest offsets are identified during Terminations II, MIS 8 and MIS 16, corresponding to periods of destabilization of the Northern polar ice sheets. We therefore suggest that the occurrence of Heinrich–like events influences the response of δ18Oatm to precession.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3