A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)

Author:

Luo Diao,Reichow Marc K.,Hou Tong,Santosh M.,Zhang Zhaochong,Wang Meng,Qin Jingyi,Yang Daoming,Pan Ronghao,Wang Xudong,Holtz François,Botcharnikov Roman

Abstract

Abstract. The transition processes from monogenetic volcanoes to composite volcanoes are poorly understood. The Late Pleistocene to Holocene intraplate monogenetic Wulanhada Volcanic Field (WVF) in northern China provides a snapshot of such a transition. Here we present petrographic observations, mineral chemistry, bulk rock major and trace element data, thermobarometry, and a partial melting model for the WVF to evaluate the lithology and partial melting degree of the mantle source, the crystallization conditions, and pre-eruptive magmatic processes occurring within the magma plumbing system. The far-field effect of India–Eurasia collision resulted in a relatively high degree (10 %–20 %) of partial melting of a carbonate-bearing eclogite (∼ 3 wt % carbonate; Gt/Cpx ≈ 2 : 8, where Gt denotes garnet and Cpx denotes clinopyroxene) followed by interaction with ambient peridotite. The primary melts ascended to the depth of the Moho (∼ 33–36 km depth), crystallized olivine, clinopyroxene and plagioclase at the temperature of 1100–1160 ∘C with the melt water contents of 1.1 wt %–2.3 wt %. Part of the primary melt interacted with the lithospheric mantle during ascent, resulting in an increase in the MgO contents and a decrease in the alkaline contents. The modified magma was subsequently directly emplaced into the middle crust (∼ 23–26 km depth) and crystallized olivine, clinopyroxene and plagioclase at the temperature of 1100–1160 ∘C. The primary melts from the same mantle sources migrated upward to the two-level magma reservoirs to form minerals with complex textures (including reverse and oscillatory zoning and sieve texture). Magma erupted along the NE–SW-striking basement fault and the NW–SE-striking Wulanhada–Gaowusu fault in response to the combined effects of regional tectonic stress and magma replenishment. The crustal magma reservoir in the WVF may represent a snapshot of the transition from monogenetic volcanoes to composite volcanoes. It is possible to form a composite volcano with large magma volumes and complex compositions if the magma is continuously supplied from the source and experiences assimilation and fractional crystallization processes in the magma plumbing system at crustal depth.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

China University of Geosciences, Beijing

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Alexander von Humboldt-Stiftung

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3