Ice sheet mass loss caused by dust and black carbon accumulation
-
Published:2015-09-22
Issue:5
Volume:9
Page:1845-1856
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Goelles T., Bøggild C. E., Greve R.ORCID
Abstract
Abstract. Albedo is the dominant factor governing surface melt variability in the ablation area of ice sheets and glaciers. Aerosols such as mineral dust and black carbon (soot) accumulate on the ice surface and cause a darker surface and therefore a lower albedo. The darkening effect on the ice surface is currently not included in sea level projections, and the effect is unknown. We present a model framework which includes ice dynamics, aerosol transport, aerosol accumulation and the darkening effect on ice albedo and its consequences for surface melt. The model is applied to a simplified geometry resembling the conditions of the Greenland ice sheet, and it is forced by several temperature scenarios to quantify the darkening effect of aerosols on future mass loss. The effect of aerosols depends non-linearly on the temperature rise due to the feedback between aerosol accumulation and surface melt. According to our conceptual model, accounting for black carbon and dust in future projections of ice sheet changes until the year 3000 could induce an additional volume loss of 7 %. Since we have ignored some feedback processes, the impact might be even larger.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference50 articles.
1. Ahlkrona, J., Kirchner, N., and Lötstedt, P.: A numerical study of scaling relations for non-newtonian thin-film flows with applications in ice sheet modelling, Q. J. Mech. Appl. Math., 66, 417–435, https://doi.org/10.1093/qjmam/hbt009, 2013. 2. Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013. 3. Bauer, S. E., Bausch, A., Nazarenko, L., Tsigaridis, K., Xu, B., Edwards, R., Bisiaux, M., and McConnell, J.: Historical and future black carbon deposition on the three ice caps: ice core measurements and model simulations from 1850 to 2100, J. Geophys. Res.-Atmos., 118, 7948–7961, https://doi.org/10.1002/jgrd.50612, 2013. 4. Bigler, M.: New aerosol measurements from the Greenland NEEM ice core, in: EGU General Assembly Conference Abstracts, 22–27 April 2012, Vienna, Austria, 5780 pp., 2012. 5. Biscaye, P. E., Grousset, F. E., Revel, M., van der Gaast, S., Zielinski, G. A., Vaars, A., and Kukla, G.: Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland, J. Geophys. Res.-Oceans, 102, 26765–26781, https://doi.org/10.1029/97JC01249, 1997.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|