Chemical ionization mass spectrometry utilizing ammonium ions (NH4+ CIMS) for measurements of organic compounds in the atmosphere

Author:

Xu LuORCID,Coggon Matthew M.,Stockwell Chelsea E.ORCID,Gilman Jessica B.,Robinson Michael A.ORCID,Breitenlechner Martin,Lamplugh Aaron,Crounse John D.ORCID,Wennberg Paul O.,Neuman J. AndrewORCID,Novak Gordon A.ORCID,Veres Patrick R.ORCID,Brown Steven S.,Warneke Carsten

Abstract

Abstract. We describe the characterization and field deployment of chemical ionization mass spectrometry (CIMS) using a recently developed focusing ion-molecule reactor (FIMR) and ammonium–water cluster (NH4+⋅H2O) as the reagent ion (denoted as NH4+ CIMS). We show that NH4+⋅H2O is a highly versatile reagent ion for measurements of a wide range of oxygenated organic compounds. The major product ion is the cluster with NH4+ produced via ligand-switching reactions. Other product ions (e.g., protonated ion, cluster ion with NH4+⋅H2O, with H3O+, and with H3O+⋅H2O) are also produced, but with minor fractions for most of the oxygenated compounds studied here. The instrument sensitivities (ion counts per second per part per billion by volume, cps ppbv−1) and product distributions are strongly dependent on the instrument operating conditions, including the ratio of ammonia (NH3) and H2O flows and the drift voltages, which should be carefully selected to ensure NH4+⋅H2O as the predominant reagent ion and to optimize sensitivities. For monofunctional analytes, the NH4+⋅H2O chemistry exhibits high sensitivity (i.e., >1000 cps ppbv−1) to ketones, moderate sensitivity (i.e., between 100 and 1000 cps ppbv−1) to aldehydes, alcohols, organic acids, and monoterpenes, low sensitivity (i.e., between 10 and 100 cps ppbv−1) to isoprene and C1 and C2 organics, and negligible sensitivity (i.e., <10 cps ppbv−1) to reduced aromatics. The instrumental sensitivities of analytes depend on the binding energy of the analyte–NH4+ cluster, which can be estimated using voltage scanning. This offers the possibility to constrain the sensitivity of analytes for which no calibration standards exist. This instrument was deployed in the RECAP campaign (Re-Evaluating the Chemistry of Air Pollutants in California) in Pasadena, California, during summer 2021. Measurement comparisons against co-located mass spectrometers show that the NH4+ CIMS is capable of detecting compounds from a wide range of chemical classes. The NH4+ CIMS is valuable for quantification of oxygenated volatile organic compounds (VOCs) and is complementary to existing chemical ionization schemes.

Funder

National Oceanic and Atmospheric Administration

California Air Resources Board

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3