Automated detection of atmospheric NO<sub>2</sub> plumes from satellite data: a tool to help infer anthropogenic combustion emissions
-
Published:2022-02-09
Issue:3
Volume:15
Page:721-733
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Finch Douglas P.ORCID, Palmer Paul I.ORCID, Zhang Tianran
Abstract
Abstract. We use a convolutional neural network (CNN) to identify plumes of nitrogen dioxide (NO2), a tracer of combustion, from
NO2 column data collected by the TROPOspheric Monitoring Instrument
(TROPOMI). This approach allows us to exploit efficiently the growing
volume of satellite data available to characterize Earth’s
climate. For the purposes of demonstration, we focus on data collected
between July 2018 and June 2020. We train the deep learning model
using six thousand 28 × 28 pixel images of TROPOMI data
(corresponding to ≃ 266 km × 133 km) and find that the
model can identify plumes with a success rate of more than 90 %. Over our study period, we find over 310 000 individual NO2 plumes, of which
≃ 19 % are found over mainland China. We have attempted to remove the influence of open biomass burning using correlative high-resolution
thermal infrared data from the Visible Infrared Imaging Radiometer
Suite (VIIRS). We relate the remaining NO2 plumes to large urban
centres, oil and gas production, and major power plants. We find no
correlation between NO2 plumes and the location of natural gas
flaring. We also find persistent NO2 plumes from regions where
inventories do not currently include emissions. Using an established
anthropogenic CO2 emission inventory, we find that our NO2 plume
distribution captures 92 % of total CO2 emissions, with the remaining 8 % mostly due to a large number of small sources (< 0.2 g C m−2 d−1)
to which our NO2 plume model is less sensitive. We argue that the underlying
CNN approach could form the basis of a Bayesian framework to estimate
anthropogenic combustion emissions.
Funder
National Centre for Earth Observation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, https://doi.org/10.5194/amt-4-1905-2011, 2011. a 2. Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811, https://doi.org/10.5194/amt-3-781-2010, 2010. a 3. Broquet, G., Bréon, F.-M., Renault, E., Buchwitz, M., Reuter, M., Bovensmann, H., Chevallier, F., Wu, L., and Ciais, P.: The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities, Atmos. Meas. Tech., 11, 681–708, https://doi.org/10.5194/amt-11-681-2018, 2018. a 4. Brunner, D., Kuhlmann, G., Marshall, J., Clément, V., Fuhrer, O., Broquet, G., Löscher, A., and Meijer, Y.: Accounting for the vertical distribution of emissions in atmospheric CO2 simulations, Atmos. Chem. Phys., 19, 4541–4559, https://doi.org/10.5194/acp-19-4541-2019, 2019. a 5. Byers, L., Friedrich, J., Hennig, R., Kressig, A., McCormick, C., and
Malaguzzi Valeri, L.: A Global Database of Power Plants, Resource Watch, available at: https://datasets.wri.org/dataset/globalpowerplantdatabase (last access: 10 March 2021), 2019. a, b
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|