Measurement report: Changes in light absorption and molecular composition of water-soluble humic-like substances during a winter haze bloom-decay process in Guangzhou, China

Author:

Zou Chunlin,Cao Tao,Li Meiju,Song Jianzhong,Jiang Bin,Jia Wanglu,Li JunORCID,Ding XiangORCID,Yu Zhiqiang,Zhang Gan,Peng Ping'an

Abstract

Abstract. Water-soluble humic-like substances (HULIS) absorb light in near-UV and visible wavelengths and exert significant influence on the atmospheric environment and climate. However, knowledge on HULIS evolution during haze bloom-decay process is limited. Herein, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and the light absorption and molecular composition of HULIS were investigated by UV–Vis spectrophotometry and ultrahigh-resolution mass spectrometry. Compared with HULIS on clean days, the absorption coefficients (Abs365) of HULIS on haze days were significantly higher but the mass absorption efficiencies (MAE365) were relatively low, suggesting diverse and dynamic absorption properties of HULIS during haze episodes. The CHO and CHON compounds were the most abundant components in HULIS, followed by CHOS, CHONS, and CHN. Haze HULIS presented comparatively high molecular weight; a lower aromaticity index (AImod); and higher O/Cw, O/Nw, and O/Sw ratios, indicating that HULIS fractions undergo relatively high oxidation during haze days compared to clean days. Moreover, CHON and CHO compounds with high AImod were the major potential chromophores in HULIS and significantly contributed to HULIS light absorption. It is worth noting that the proportions of these chromophores decreased during haze events, mainly owing to their higher oxidation during haze episodes. Besides, accumulated contribution of organic compounds emitted from vehicles and formed from reactions of biogenic volatile organic compounds (bio-VOCs) also diluted light-absorbing compounds in haze HULIS. These findings help us to understand HULIS evolution during haze bloom-decay processes in the subtropic region of China.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference73 articles.

1. An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.

2. Berkemeier, T., Ammann, M., Mentel, T. F., Poschl, U., and Shiraiwa, M.: Organic nitrate contribution to new particle formation and growth in secondary organic aerosols from alpha-pinene ozonolysis, Environ. Sci. Technol., 50, 6334–6342, https://doi.org/10.1021/acs.est.6b00961, 2016.

3. Bianco, A., Deguillaume, L., Vaitilingom, M., Nicol, E., Baray, J. L., Chaumerliac, N., and Bridoux, M.: Molecular characterization of cloud water samples collected at the Puy de Dome (France) by Fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol., 52, 10275–10285, https://doi.org/10.1021/acs.est.8b01964, 2018.

4. Blair, S. L., MacMillan, A. C., Drozd, G. T., Goldstein, A. H., Chu, R. K., Paša-Tolić, L., Shaw J. B., Tolić, N., Lin, P., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Molecular characterization of organosulfur compounds in biodiesel and diesel fuel secondary organic aerosol. American Chemical Society, Environ. Sci. Technol., 51, 119–127, https://doi.org/10.1021/acs.est.6b03304, 2017.

5. Cao, T., Li, M., Zou, C., Fan, X., Song, J., Jia, W., Yu, C., Yu, Z., and Peng, P.: Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal, Atmos. Chem. Phys., 21, 13187–13205, https://doi.org/10.5194/acp-21-13187-2021, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3