Pressure broadening in the 2ν<sub>3</sub> band of methane and its implication on atmospheric retrievals

Author:

Frankenberg C.,Warneke T.,Butz A.,Aben I.,Hase F.,Spietz P.,Brown L. R.

Abstract

Abstract. N2-broadened half widths and pressure shifts were obtained for transitions in the 2ν3 methane band. Laboratory measurements recorded at 0.011 cm−1 resolution with a Bruker 120 HR Fouriertransform spectrometer were analysed from 5860 to 6185 cm−1. A 140 cm gas cell was filled with methane at room temperature and N2 as foreign gas at pressures ranging from 125 to 900 hPa. A multispectrum nonlinear constrained least squares approach based on Optimal Estimation was applied to derive the spectroscopic parameters by simultaneously fitting laboratory spectra at different ambient pressures assuming a Voigt line-shape. At room temperature, the half widths ranged between 0.030 and 0.071 cm−1 atm−1, and the pressure shifts varied from –0.002 to –0.025 cm−1 atm−1 for transitions up to J"=10. Especially for higher rotational levels, we find systematically narrower lines than HITRAN predicts. The Q and R branch of the new set of spectroscopic parameters is further tested with ground based direct sun Fourier transform infrared (FTIR) measurements where systematic fit residuals reduce by about a factor of 3–4. We report the implication of those differences on atmospheric methane measurements using high-resolution ground based FTIR measurements as well as low-resolution spectra from the SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY) instrument onboard ENVISAT. We find that for SCIAMACHY, a latitudinal and seasonally varying bias of about 1% can be introduced by erroneous broadening parameters.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference2 articles.

1. % REFERENCE 1 %

2. % REFERENCE 2 % ... %

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3