Soil priming effects and involved microbial community along salt gradients

Author:

Zhang Haoli,Chang Doudou,Zhu Zhifeng,Meng Chunmei,Wang Kaiyong

Abstract

Abstract. Soil salinity mediates microorganisms and soil processes, like soil organic carbon (SOC) cycling. Yet, how soil salinity affects SOC mineralization via shaping bacterial community diversity and composition remains elusive. Therefore, soils were sampled along a salt gradient (salinity at 0.25 %, 0.58 %, 0.75 %, 1.00 %, and 2.64 %) and incubated for 90 d to investigate (i) SOC mineralization (i.e., soil priming effects induced by cottonseed meal, as substrate) and (ii) the responsible bacteria community by using high-throughput sequencing and natural abundance of 13C isotopes (to partition cottonseed-meal-derived CO2 and soil-derived CO2). We observed a negative priming effect during the first 28 d of incubation that turned to a positive priming effect after day 56. Negative priming at the early stage might be due to the preferential utilization of cottonseed meal. The followed positive priming decreased with the increase in salinity, which might be caused by the decreased α diversity of microbial communities in soil with high salinity. Specifically, soil pH and electrical conductivity (EC) along the salinity gradient were the dominant variables modulating the structure of the microbial community and consequently SOC priming (estimated by distance-based multivariate analysis and path analysis). By adopting two-way orthogonal projections to latent structures (O2PLS), priming effects were linked with specific microbial taxa; e.g., Proteobacteria (Luteimonas, Hoeflea, and Stenotrophomonas) were the core microbial genera that were attributed to the substrate-induced priming effects. Here, we highlight that the increase in salinity reduced the diversity of the microbial community and shifted dominant microorganisms (Actinobacteria and Proteobacteria: Luteimonas, Hoeflea, and Stenotrophomonas) that determined SOC priming effects, which provides a theoretical basis for understanding SOC dynamics and microbial drivers under the salinity gradient.

Funder

Science and Technology Department of Xinjiang Uyghur Autonomous Region

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3