Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany
-
Published:2015-05-19
Issue:10
Volume:12
Page:2861-2871
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Krüger J. P., Leifeld J.ORCID, Glatzel S.ORCID, Szidat S.ORCID, Alewell C.
Abstract
Abstract. Organic soils in peatlands store a great proportion of the global soil carbon pool and can lose carbon via the atmosphere due to degradation. In Germany, most of the greenhouse gas (GHG) emissions from organic soils are attributed to sites managed as grassland. Here, we investigated a land use gradient from near-natural wetland (NW) to an extensively managed (GE) to an intensively managed grassland site (GI), all formed in the same bog complex in northern Germany. Vertical depth profiles of δ13C, δ15N, ash content, C / N ratio and bulk density as well as radiocarbon ages were studied to identify peat degradation and to calculate carbon loss. At all sites, including the near-natural site, δ13C depth profiles indicate aerobic decomposition in the upper horizons. Depth profiles of δ15N differed significantly between sites with increasing δ15N values in the top soil layers paralleling an increase in land use intensity owing to differences in peat decomposition and fertilizer application. At both grassland sites, the ash content peaked within the first centimetres. In the near-natural site, ash contents were highest in 10–60 cm depth. The ash profiles, not only at the managed grassland sites, but also at the near-natural site indicate that all sites were influenced by anthropogenic activities either currently or in the past, most likely due to drainage. Based on the enrichment of ash content and changes in bulk density, we calculated the total carbon loss from the sites since the peatland was influenced by anthropogenic activities. Carbon loss at the sites increased in the following order: NW < GE < GI. Radiocarbon ages of peat in the topsoil of GE and GI were hundreds of years, indicating the loss of younger peat material. In contrast, peat in the first centimetres of the NW was only a few decades old, indicating recent peat growth. It is likely that the NW site accumulates carbon today but was perturbed by anthropogenic activities in the past. Together, all biogeochemical parameters indicate a degradation of peat due to (i) conversion to grassland with historical drainage and (ii) land use intensification.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference63 articles.
1. Accoe, F., Boeckx, P., Van Cleemput, O., and Hofman, G.: Relationship between soil organic C degradability and the evolution of the delta13C signature in profiles under permanent grassland, Rapid Commun. Mass Sp., 17, 2591–2596, https://doi.org/10.1002/rcm.1202, 2003. 2. Ågren, G. I., Bosatta, E., and Balesdent, J.: Isotope discrimination during decomposition of organic matter: A theoretical analysis, Soil Sci. Soc. Am. J., 60, 1121–1126, 1996. 3. Ahrendt, R.: Die Entdeckung des Ahlenmoores – Aneignungen einer Landschaft in der ersten Hälfte des 20. Jahrhunderts, Beiträge zur Geschichte und Kultur des Elbe-Weser-Raumes, Verlag des Landschaftsverband der ehemaligen Herzogtümer Bremen und Verden, Stade, 2012. 4. Alewell, C., Giesler, R., Klaminder, J., Leifeld, J., and Rollog, M.: Stable carbon isotopes as indicators for environmental change in palsa peats, Biogeosciences, 8, 1769–1778, https://doi.org/10.5194/bg-8-1769-2011, 2011. 5. Asada, T., Warner, B., and Aravena, R.: Effects of the early stage of decomposition on change in carbon and nitrogen isotopes in Sphagnumlitter, Journal of Plant Interactions, 1, 229–237, https://doi.org/10.1080/17429140601056766, 2005a.
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|