Quantifying seasonal cornice dynamics using a terrestrial laser scanner in Svalbard, Norway
-
Published:2020-02-26
Issue:2
Volume:20
Page:603-623
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Hancock Holt, Eckerstorfer Markus, Prokop Alexander, Hendrikx JordyORCID
Abstract
Abstract. Snow cornices develop along mountain ridges, edges of plateaus, and marked inflections in topography throughout regions with seasonal and permanent snow cover. Despite the recognized hazard posed by cornices in mountainous locations, limited modern research on cornice dynamics exists and accurately forecasting cornice failure continues to be problematic. Cornice failures and associated cornice fall avalanches comprise a majority of observed avalanche activity and endanger human life and infrastructure annually near Longyearbyen in central Svalbard, Norway. In this work, we monitored the seasonal development of the cornices along the plateaus near Longyearbyen with a terrestrial laser scanner (TLS) during the 2016–2017 and 2017–2018 winter seasons. The spatial resolution at which
we acquired snow surface data with TLS enabled us to observe and quantify
changes to the cornice systems in detail not previously achieved. We focused primarily on the evolution and failure of the lower cornice surfaces where accessibility has precluded previous research. We measured cornice accretion rates in excess of 10 mm h−1 during several accretion events coinciding with winter storms. We observed five cornice fall avalanche events following periods of cornice accretion and one event following a warm period with midwinter rain. The results of our investigation provide quantitative reinforcement to existing conceptual models of cornice dynamics and illustrate cornice response to specific meteorological events. Our results demonstrate the utility of TLS for monitoring cornice processes and as a viable method for quantitative cornice studies in this and other locations where cornices are of scientific or operational interest.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference52 articles.
1. Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and
Lato, M. J.: Terrestrial laser scanning of rock slope instabilities, Earth
Surf. Proc. Land., 39, 80–97, https://doi.org/10.1002/esp.3493, 2014. 2. American Avalanche Association: Snow, Weather and Avalanches: Observation
Guidelines for Avalanche Programs in the United States, 3rd Edn., Victor, ID,
104 pp., 2016. 3. Anderton, S. P., White, S. M., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004. 4. Caputo, T., Marino, E., Matano, F., Somma, R., Troise, C., and De Natale, G.: Terrestrial Laser Scanning (TLS) data for the analysis of coastal tuff cliff retreat: application to Coroglio cliff, Naples, Italy, Ann. Geophys., 61,
SE110, https://doi.org/10.4401/ag-7494, 2018. 5. Christiansen, H. H., Humlum, O., and Eckerstorfer, M.: Central Svalbard 2000–2011 meteorological dynamics and periglacial landscape response, Arct. Antarct. Alp. Res., 45, 6–18, https://doi.org/10.1657/1938-4246-45.16, 2013.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|