Projected impacts of climate change on hydropower potential in China
-
Published:2016-08-22
Issue:8
Volume:20
Page:3343-3359
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Liu XingcaiORCID, Tang QiuhongORCID, Voisin NathalieORCID, Cui HuijuanORCID
Abstract
Abstract. Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by −1.7 to 2 % in the near future (2020–2050) and increase by 3 to 6 % in the late 21st century (2070–2099). The annual DHP is projected to change by −2.2 to −5.4 % (0.7–1.7 % of the total installed hydropower capacity (IHC)) and −1.3 to −4 % (0.4–1.3 % of total IHC) for 2020–2050 and 2070–2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China – mostly in south central China and eastern China – where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference89 articles.
1. Bahadori, A., Zahedi, G., and Zendehboudi, S.: An overview of Australia's hydropower energy: Status and future prospects, Renew. Sust. Energ. Rev., 20, 565—569, https://doi.org/10.1016/j.rser.2012.12.026, 2013. 2. Bartos, M. D. and Chester, M. V.: Impacts of climate change on electric power supply in the Western United States, Nature Clim. Change, 5, 748–752, https://doi.org/10.1038/nclimate2648, 2015. 3. Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke, J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and irrigation water supply during the 20th century, Water Resour. Res., 47, W03509, https://doi.org/10.1029/2009WR008929, 2011. 4. Chang, X., Liu, X., and Zhou, W.: Hydropower in China at present and its further development, Energy, 35, 4400–4406, https://doi.org/10.1016/j.energy.2009.06.051, 2010. 5. China National Renewable Energy Centre (CNREC): China Renewable Energy Outline 2012, available at: http://www.cnrec.org.cn/english/publication/2014-01-20-408.html (last access: 10 January 2016), 2013.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|