Abstract
Abstract. In the past decade, machine learning methods for empirical rainfall–runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models are limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has often evaluated model performance based on predictive accuracy alone, while not considering broader objectives, such as model interpretability and uncertainty, that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine learning approaches (including generalized additive models, multivariate adaptive regression splines, artificial neural networks, random forests, and M5 cubist models) to simulate monthly streamflow in five highly seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under extreme climate conditions should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines) become highly variable when faced with high temperatures.
Funder
National Science Foundation
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference66 articles.
1. Abrahart, R. J. and See, L. M.: Neural network modelling of non-linear hydrological relationships, Hydrol. Earth Syst. Sci., 11, 1563–1579, https://doi.org/10.5194/hess-11-1563-2007, 2007.
2. Achenef, H., Tilahun, A., and Molla, B.: Tana Sub Basin Initial Scenarios and Indicators Development Report, Tana Sub Basin Organization, Bahir Dar, Ethiopia, 8–9, 2013.
3. Alemayehu, T., McCartney, M., and Kebede, S.: The water resource implications of planned development in the Lake Tana catchment, Ethiopia, Ecohydrol. Hydrobiol., 10, 211–221, https://doi.org/10.2478/v10104-011-0023-6, 2010.
4. Antar, M. A., Elassiouti, I., and Allam, M. N.: rainfall–runoff modelling using artificial neural networks technique: a Blue Nile catchment case study, Hydrol. Process., 20, 1201–1216, https://doi.org/10.1002/hyp.5932, 2006.
5. Aqil, M., Kita, I., Yano, A., and Nishiyama, S.: Neural Networks for Real Time Catchment Flow Modeling and Prediction, Water Resour. Manage., 21, 1781–1796, https://doi.org/10.1007/s11269-006-9127-y, 2007.
Cited by
191 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献