Carbon dioxide (CO<sub>2</sub>) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia

Author:

de Araújo Kleiton R.,Sawakuchi Henrique O.ORCID,Bertassoli Jr. Dailson J.,Sawakuchi André O.,da Silva Karina D.,Vieira Thiago B.,Ward Nicholas D.,Pereira Tatiana S.

Abstract

Abstract. The Belo Monte hydropower complex located in the Xingu River is the largest run-of-the-river (ROR) hydroelectric system in the world and has one of the highest energy production capacities among dams. Its construction received significant media attention due to its potential social and environmental impacts. It is composed of two ROR reservoirs: the Xingu Reservoir (XR) in the Xingu's main branch and the Intermediate Reservoir (IR), an artificial reservoir fed by waters diverted from the Xingu River with longer water residence time compared to XR. We aimed to evaluate spatiotemporal variations in CO2 partial pressure (pCO2) and CO2 fluxes (FCO2) during the first 2 years after the Xingu River impoundment under the hypothesis that each reservoir has contrasting FCO2 and pCO2 as vegetation clearing reduces flooded area emissions. Time of the year had a significant influence on pCO2 with the highest average values observed during the high-water season. Spatial heterogeneity throughout the entire study area was observed for pCO2 during both low- and high-water seasons. FCO2, on the other hand, only showed significant spatial heterogeneity during the high-water period. FCO2 (0.90±0.47 and 1.08±0.62 µmol m2 d−1 for XR and IR, respectively) and pCO2 (1647±698 and 1676±323 µatm for XR and IR, respectively) measured during the high-water season were on the same order of magnitude as previous observations in other Amazonian clearwater rivers unaffected by impoundment during the same season. In contrast, during the low-water season FCO2 (0.69±0.28 and 7.32±4.07 µmol m2 d−1 for XR and IR, respectively) and pCO2 (839±646 and 1797±354 µatm for XR and IR, respectively) in IR were an order of magnitude higher than literature FCO2 observations in clearwater rivers with naturally flowing waters. When CO2 emissions are compared between reservoirs, IR emissions were 90 % higher than values from the XR during low-water season, reinforcing the clear influence of reservoir characteristics on CO2 emissions. Based on our observations in the Belo Monte hydropower complex, CO2 emissions from ROR reservoirs to the atmosphere are in the range of natural Amazonian rivers. However, the associated reservoir (IR) may exceed natural river emission rates due to the preimpounding vegetation influence. Since many reservoirs are still planned to be constructed in the Amazon and throughout the world, it is critical to evaluate the implications of reservoir traits on FCO2 over their entire life cycle in order to improve estimates of CO2 emissions per kilowatt for hydropower projects planned for tropical rivers.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference69 articles.

1. Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., Dos Santos, M. A., and Matvienko, B.: Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana), Global Biogeochem. Cy., 19, 1–16, https://doi.org/10.1029/2005GB002457, 2005.

2. Alin, S. R., Rasera, M. D. F. F. L., Salimon, C. I., Richey, J. E., Holtgrieve, G. W., Krusche, A. V., and Snidvongs, A.: Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets, J. Geophys. Res.-Biogeo., 116, G01009, https://doi.org/10.1029/2010JG001398, 2011.

3. Almeida, C. A., Coutinho, A. C., Esquerdo, J. C. D. M., Adami, M., Venturieri, A., Diniz, C. G., Dessay, N., Durieux, L., and Gomes, A. R.: High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data, Acta Amazon., 46, 291–302, https://doi.org/10.1590/1809-4392201505504, 2016.

4. Amaral, J. H. F., Borges, A. V., Melack, J. M., Sarmento, H., Barbosa, P. M., Kasper, D., de Melo, M. L., De Fex-Wolf, D., da Silva, J. S., and Forsberg, B. R.: Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake, Sci. Total Environ., 630, 1381–1393, https://doi.org/10.1016/j.scitotenv.2018.02.331, 2018.

5. ANA: Agência Nacional Das Águas, available at: https://http://www.snirh.gov.br/hidroweb/publico/medicoes_historicas_abas.jsf, last access: 27 August 2017.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3