Evaluation of high-resolution GRAMM–GRAL (v15.12/v14.8) NO<sub><i>x</i></sub> simulations over the city of Zürich, Switzerland

Author:

Berchet AntoineORCID,Zink Katrin,Oettl Dietmar,Brunner Jürg,Emmenegger LukasORCID,Brunner DominikORCID

Abstract

Abstract. Hourly NOx concentrations were simulated for the city of Zürich, Switzerland, at 10 m resolution for the years 2013–2014. The simulations were generated with the nested mesoscale meteorology and micro-scale dispersion model system GRAMM–GRAL (versions v15.12 and v14.8) by applying a catalogue-based approach. This approach was specifically designed to enable long-term city-wide building-resolving simulations with affordable computation costs. It relies on a discrete set of possible weather situations and corresponding steady-state flow and dispersion patterns that are pre-computed and then matched hourly with actual meteorological observations. The modelling system was comprehensively evaluated using eight sites continuously monitoring NOx concentrations and 65 passive samplers measuring NO2 concentrations on a 2-weekly basis all over the city. The system was demonstrated to fulfil the European Commission standards for air pollution modelling at nearly all sites. The average spatial distribution was very well represented, despite a general tendency to overestimate the observed concentrations, possibly due to a crude representation of traffic-induced turbulence and to underestimated dispersion in the vicinity of buildings. The temporal variability of concentrations explained by varying emissions and weather situations was accurately reproduced on different timescales. The seasonal cycle of concentrations, mostly driven by stronger vertical dispersion in summer than in winter, was very well captured in the 2-year simulation period. Short-term events, such as episodes of particularly high and low concentrations, were detected in most cases by the system, although some unrealistic pollution peaks were occasionally generated, pointing at some limitations of the steady-state approximation. The different patterns of the diurnal cycle of concentrations observed in the city were generally well captured as well. The evaluation confirmed the adequacy of the catalogue-based approach in the context of city-scale air pollution modelling. The ability to reproduce not only the spatial gradients but also the hourly temporal variability over multiple years makes the model system particularly suitable for investigating individualized air pollution exposure in the city.

Publisher

Copernicus GmbH

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3