LANL<sup>*</sup>V2.0: global modeling and validation

Author:

Koller J.,Zaharia S.

Abstract

Abstract. We describe in this paper the new version of LANL*, an artificial neural network (ANN) for calculating the magnetic drift invariant L*. This quantity is used for modeling radiation belt dynamics and for space weather applications. We have implemented the following enhancements in the new version: (1) we have removed the limitation to geosynchronous orbit and the model can now be used for a much larger region. (2) The new version is based on the improved magnetic field model by Tsyganenko and Sitnov (2005) (TS05) instead of the older model by Tsyganenko et al. (2003). We have validated the model and compared our results to L* calculations with the TS05 model based on ephemerides for CRRES, Polar, GPS, a LANL geosynchronous satellite, and a virtual RBSP type orbit. We find that the neural network performs very well for all these orbits with an error typically ΔL* < 0.2 which corresponds to an error of 3 % at geosynchronous orbit. This new LANL* V2.0 artificial neural network is orders of magnitudes faster than traditional numerical field line integration techniques with the TS05 model. It has applications to real-time radiation belt forecasting, analysis of data sets involving decades of satellite of observations, and other problems in space weather.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3