Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow
-
Published:2019-10-29
Issue:20
Volume:19
Page:13325-13339
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Spolaor AndreaORCID, Barbaro Elena, Cappelletti DavidORCID, Turetta ClaraORCID, Mazzola MauroORCID, Giardi Fabio, Björkman Mats P.ORCID, Lucchetta Federico, Dallo FedericoORCID, Pfaffhuber Katrine Aspmo, Angot HélèneORCID, Dommergue AurelienORCID, Maturilli MarionORCID, Saiz-Lopez AlfonsoORCID, Barbante CarloORCID, Cairns Warren R. L.ORCID
Abstract
Abstract. Sunlit snow is highly photochemically active and plays a key role in the
exchange of gas phase species between the cryosphere and the atmosphere.
Here, we investigate the behaviour of two selected species in surface snow:
mercury (Hg) and iodine (I). Hg can deposit year-round and accumulate in the
snowpack. However, photo-induced re-emission of gas phase Hg from the
surface has been widely reported. Iodine is active in atmospheric new
particle formation, especially in the marine boundary layer, and in the
destruction of atmospheric ozone. It can also undergo photochemical
re-emission. Although previous studies indicate possible post-depositional
processes, little is known about the diurnal behaviour of these two species
and their interaction in surface snow. The mechanisms are still poorly
constrained, and no field experiments have been performed in different
seasons to investigate the magnitude of re-emission processes Three sampling
campaigns conducted at an hourly resolution for 3 d each were carried out
near Ny-Ålesund (Svalbard) to study the behaviour of mercury and iodine
in surface snow under different sunlight and environmental conditions
(24 h darkness, 24 h sunlight and day–night cycles). Our results indicate a
different behaviour of mercury and iodine in surface snow during the
different campaigns. The day–night experiments demonstrate the existence of a
diurnal cycle in surface snow for Hg and iodine, indicating that these
species are indeed influenced by the daily solar radiation cycle.
Differently, bromine did not show any diurnal cycle. The diurnal cycle also
disappeared for Hg and iodine during the 24 h sunlight period and during
24 h darkness experiments supporting the idea of the occurrence (absence) of
a continuous recycling or exchange at the snow–air interface. These results
demonstrate that this surface snow recycling is seasonally dependent,
through sunlight. They also highlight the non-negligible role that snowpack
emissions have on ambient air concentrations and potentially on
iodine-induced atmospheric nucleation processes.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference72 articles.
1. Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J., Taylor, J. W., Liu, D., Darbyshire, E., Carpenter, L. J., Chance, R., Andrews, S. J., Hackenberg, S. C., and McFiggans, G.: Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA, Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, 2015. 2. Angot, H., Dastoor, A., De Simone, F., Gårdfeldt, K., Gencarelli, C. N., Hedgecock, I. M., Langer, S., Magand, O., Mastromonaco, M. N., Nordstrøm, C., Pfaffhuber, K. A., Pirrone, N., Ryjkov, A., Selin, N. E., Skov, H., Song, S., Sprovieri, F., Steffen, A., Toyota, K., Travnikov, O., Yang, X., and Dommergue, A.: Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models, Atmos. Chem. Phys., 16, 10735–10763, https://doi.org/10.5194/acp-16-10735-2016, 2016a. 3. Angot, H., Dion, I., Vogel, N., Legrand, M., Magand, O., and Dommergue, A.: Multi-year record of atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic influences, Atmos. Chem. Phys., 16, 8265–8279, https://doi.org/10.5194/acp-16-8265-2016, 2016b. 4. Angot, H., Magand, O., Helmig, D., Ricaud, P., Quennehen, B., Gallée, H., Del Guasta, M., Sprovieri, F., Pirrone, N., Savarino, J., and Dommergue, A.: New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale, Atmos. Chem. Phys., 16, 8249–8264, https://doi.org/10.5194/acp-16-8249-2016, 2016c. 5. Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., and Tremblay, J.-É.: Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates, Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, 2013.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|