Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
-
Published:2024-07-05
Issue:13
Volume:17
Page:3995-4014
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Kristoffersen Samuel K.ORCID, Ward William E., Meek Chris E.
Abstract
Abstract. Upper-atmosphere winds from a meteor radar and a field-widened Michelson interferometer, co-located at the Polar Environment Atmospheric Research Laboratory in Eureka, Nunavut, Canada (80° N, 86° W) are compared. The two instruments implement different wind-measuring techniques at similar heights and have very different temporal and spatial observational footprints. The meteor radar provides winds averaged over a ∼ 300 km horizontal area in 3 km vertical bins between 82 and 97 km on a 1 h cadence. The E-Region Wind Interferometer II (ERWIN) provides airglow-weighted winds (averaged over volumes of ∼ 8 km in height by ∼ 5 km radius) from three nightglow emissions (O(1S), oxygen green line, 557.7 nm, 97 km; an O2 line, 866 nm, 94 km; and an OH line, 843 nm, 87 km) on a ∼ 5 min cadence. ERWIN's higher precision (1–2 m s−1 for the O(1S) and OH emissions and ∼ 4 m s−1 for the O2 emissions) and higher cadence allows more substantive comparisons between winds measured by meteor radar and Doppler shifts in airglow emissions than previously possible for similar meteor radar/airglow Doppler shift comparisons using Fabry–Perot interferometers. The best correlation is achieved using Gaussian weighting of meteor radar winds with peak height and vertical width being optimally determined. Peak heights agree well with co-located SABER airglow observations. Offsets between the two instruments are ∼ 1–2 m s−1 for the O2 and O(1S) emissions and less than 0.3 m s−1 for the OH emission. Wind directions are highly correlated with a ∼ 1:1 correspondence. On average, meteor radar wind magnitudes are ∼ 40 % larger than those from ERWIN. Gravity wave airglow brightness weighting of observations is discussed. Non-quadrature phase offsets between the airglow weighting and gravity wave associated wind and temperature perturbations will result in enhanced or reduced layer-weighted wind amplitudes.
Funder
Nova Scotia Research Innovation Trust Canada Foundation for Innovation Canadian Foundation for Climate and Atmospheric Sciences Canadian Space Agency Environment and Climate Change Canada Natural Sciences and Engineering Research Council of Canada Ontario Innovation Trust Ontario Research Foundation
Publisher
Copernicus GmbH
Reference77 articles.
1. Ammosov, P. P., Gavrilyeva, G. A., Koltovskoi, I. I., Ammosova, A. M., and Sivtseva, V. I.: Cross-calibration of ground-based measurement of rotational temperature of OH(3-1) at altitude ≈ 87 km in Maimaga (63° N, γ = 129.5° E) and SABER TIMED satellite data, J. Phys. Conf. Ser., 1152, 012017, https://doi.org/10.1088/1742-6596/1152/1/012017, 2019. a 2. Azeem, S. M. I., Killeen, T. L., Johnson, R. M., Wu, Q., and Gell, D. A.: Space-time analysis of TIMED Doppler Interferometer (TIDI) measurements, Geophys. Res. Lett., 27, 3297–3300, https://doi.org/10.1029/1999GL011289, 2000. a 3. Burrage, M. D., Skinner, W. R., Gell, D. A., Hays, P. B., Marshall, A. R., Ortland, D. A., Manson, A. H., Franke, S. J., Fritts, D. C., Hoffman, P., McLandress, C., Niciejewski, R., Schmidlin, F. J., Shepherd, G. G., Singer, W., Tsuda, T., and Vincent, R. A.: Validation of mesosphere and lower thermosphere winds from the high resolution Doppler imager on UARS, J. Geophys. Res.-Atmos., 101, 10365–10392, https://doi.org/10.1029/95JD01700, 1996. a, b 4. Chau, J. L., Urco, J. M., Vierinen, J., Harding, B. J., Clahsen, M., Pfeffer, N., Kuyeng, K. M., Milla, M. A., and Erickson, P. J.: Multistatic Specular Meteor Radar Network in Peru: System Description and Initial Results, Earth Space Sci., 8, e2020EA001293, https://doi.org/10.1029/2020EA001293, 2021. a 5. Daglis, I. A., Chang, L. C., Dasso, S., Gopalswamy, N., Khabarova, O. V., Kilpua, E., Lopez, R., Marsh, D., Matthes, K., Nandy, D., Seppälä, A., Shiokawa, K., Thiéblemont, R., and Zong, Q.: Predictability of variable solar–terrestrial coupling, Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, 2021. a
|
|