Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
-
Published:2024-07-01
Issue:1
Volume:43
Page:187-209
-
ISSN:2041-4978
-
Container-title:Journal of Micropalaeontology
-
language:en
-
Short-container-title:J. Micropalaeontol.
Author:
Dameron Serena N.,Leckie R. Mark,Harwood David,Scherer Reed,Webb Peter-Noel
Abstract
Abstract. In 1977–1978 and 1978–1979, the Ross Ice Shelf Project (RISP) recovered sediments from beneath the largest ice shelf in Antarctica at Site J-9 (∼82° S, 168° W), ∼450 km from open marine waters at the calving front of the Ross Ice Shelf and 890 km from the South Pole, one of the southernmost sites for marine sediment recovery in Antarctica. One important finding was the discovery of an active macrofauna, including crustaceans and fish, sustained below the ice shelf far from open waters. The sediment has a thin, unconsolidated upper unit (up to 20 cm thick) and a texturally similar but compacted lower unit (>1 m thick) containing reworked early, middle, and late Miocene diatom and calcareous benthic foraminiferal assemblages. A probable post-Last Glacial Maximum (LGM) disconformity separates the upper unit containing a dominantly agglutinated foraminiferal assemblage, from the lower unit consisting mostly of reworked Miocene calcareous benthic species, including Trifarina fluens, Elphidium magellanicum, Globocassidulina subglobosa, Gyroidina sp., and Nonionella spp. The presence of the polar planktic foraminiferal species Neogloboquadrina pachyderma and the endemic Antarcticella antarctica supports the late Miocene diatom age for the matrix of the lower unit. The microfossil assemblages indicate periods of ice sheet collapse and open-water conditions south of Site J-9 during warm intervals of the early, middle, and late Miocene, including the Miocene Climatic Optimum (∼17–14.7 Ma), demonstrating the dynamic nature of the West Antarctic Ice Sheet (WAIS) and Ross Ice Shelf during the Neogene. The foraminiferal assemblage of the upper unit is unique to the Ross Sea and suggests the influence of a sub-ice-shelf water mass proximal to the retreating post-LGM grounding zone. This unique assemblage is strongly dominated by the bathyal, cold-water agglutinated genus Cyclammina.
Funder
National Science Foundation
Publisher
Copernicus GmbH
Reference159 articles.
1. Anderson, J. B.: Ecology and Distribution of Foraminifera in the Weddell Sea of Antarctica, Micropaleontology, 21, 69–96, https://doi.org/10.2307/1485156, 1975. 2. Anderson, J. B. and Bartek, L. R.: Cenozoic glacial history of the Ross Sea revealed by intermediate resolution seismic reflection data combined with drill site information, in: The Antarctic Paleoenvironment: A Perspective on Global Change: Part One, edited by: Kennett, J. P. and Warkne, D. A., Antarctic Research Series, 56, 231–263, https://doi.org/10.1029/ar056p0231, 1992. 3. Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson, M., and Stone, J. O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Sci. Rev., 100, 31–54, https://doi.org/10.1016/j.quascirev.2013.08.020, 2014. 4. Askin, R. A. and Markgraf, V.: Palynomorphs from the Sirius Formation, Dominion Range, Antarctica, Antarct. J. US, 21, 34–35, 1986. 5. Askin, R. A. and Raine, J. I.: Oligocene and early Miocene terrestrial palynology of the Cape Roberts drillhole CRP-2/2A, Victoria Land Basin, Antarctica, Terra Antarctica, 7, 493–501, 2000.
|
|