Understanding representations of uncertainty, an eye-tracking study – Part 1: The effect of anchoring

Author:

Mulder Kelsey J.,Williams LouisORCID,Lickiss Matthew,Black Alison,Charlton-Perez Andrew,McCloy Rachel,McSorley Eugene

Abstract

Abstract. Geoscience communicators must think carefully about how uncertainty is represented and how users may interpret these representations. Doing so will help communicate risk more effectively, which can elicit appropriate responses. Communication of uncertainty is not just a geosciences problem; recently, communication of uncertainty has come to the forefront over the course of the COVID-19 pandemic, but the lessons learned from communication during the pandemic can be adopted across geosciences as well. To test interpretations of environmental forecasts with uncertainty, a decision task survey was administered to 65 participants who saw different hypothetical forecast representations common to presentations of environmental data and forecasts: deterministic, spaghetti plot with and without a median line, fan plot with and without a median line, and box plot with and without a median line. While participants completed the survey, their eye movements were monitored with eye-tracking software. Participants' eye movements were anchored to the median line, not focusing on possible extreme values to the same extent as when no median line was present. Additionally, participants largely correctly interpreted extreme values from the spaghetti and fan plots, but misinterpreted extreme values from the box plot, perhaps because participants spent little time fixating on the key. These results suggest that anchoring lines, such as median lines, should only be used where users should be guided to particular values and where extreme values are not as important in data interpretation. Additionally, fan or spaghetti plots should be considered instead of box plots to reduce misinterpretation of extreme values. Further study on the role of expertise and the change in eye movements across the graph area and key is explored in more detail in the companion paper to this study (Williams et al., 2023; hereafter Part 2).

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3