Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC

Author:

Monga O.,Garnier P.,Pot V.,Coucheney E.,Nunan N.,Otten W.,Chenu C.ORCID

Abstract

Abstract. This paper deals with the simulation of microbial degradation of organic matter in soil within the pore space at a microscopic scale. Pore space was analysed with micro-computed tomography and described using a sphere network coming from a geometrical modelling algorithm. The biological model was improved regarding previous work in order to include the transformation of dissolved organic compounds and diffusion processes. We tested our model using experimental results of a simple substrate decomposition experiment (fructose) within a simple medium (sand) in the presence of different bacterial strains. Separate incubations were carried out in microcosms using five different bacterial communities at two different water potentials of −10 and −100 cm of water. We calibrated the biological parameters by means of experimental data obtained at high water content, and we tested the model without changing any parameters at low water content. Same as for the experimental data, our simulation results showed that the decrease in water content caused a decrease of mineralization rate. The model was able to simulate the decrease of connectivity between substrate and microorganism due the decrease of water content.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference37 articles.

1. Blagodatsky, S. A., Yevdokimov, I. V., Larinova, A. A., and Richter, J.: Microbial growth in soil and nitrogen turnover: model calibration with laboratory data, Soil Biol. Biochem., 30, 1757–1764, 1998.

2. Chenu, C. and Stotzky, G.: Interactions between microorganisms and soil particles: An overview, in: Interactions between soil particles and microorganisms, edited by: Huang, P. M., Bollag, J. M., and Senesi, N., IUPAC Serie Appl. Geochem., Wiley and Sons, New York, 3–40, 2002.

3. Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klir, J., Korschens, M., Poulton, P. R., and Richter, D. D., Simulating trends in soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81, 29–44, 1997.

4. Coucheney, E.: Impact of bacterial diversity on community response to climatic factors: a microcosms study on microbial respiration and metabolomics, University of Paris 6 (France), 239 pp., 2009.

5. Dechesne, A., Owsianiak, M., Bazire, A., Grundmann, G. L., Binning, P. J., and Smets, B. F.: Biodegradation in a partially saturated sand matrix: compounding effects of water content, bacterial spatial distribution, and motility, Environ. Sci. Technol., 44, 2386–2392, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3