GloCAB: global cropland burned area from mid-2002 to 2020
-
Published:2024-02-09
Issue:2
Volume:16
Page:867-885
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Hall Joanne V., Argueta Fernanda, Zubkova MariaORCID, Chen YangORCID, Randerson James T., Giglio Louis
Abstract
Abstract. Burned area estimates are an essential component of cropland management systems, inventory-based fire emission calculations, and air quality models, and any inaccuracies in these estimates propagate into the final outputs and decision-making process. While satellite-based global burned area and fire emission datasets (e.g., GFED, FireCCI51, and MCD64A1) are frequently cited in the scientific literature and are employed by a range of users from atmospheric and carbon modelers to policy-makers, they are generally not optimized for cropland burning – a quintessential small-fire type. Here we describe a new dataset (GloCAB; global cropland area burned) which represents the first attempt at a global cropland-focused burned area product. The GloCAB dataset provides global, monthly cropland burned area at 0.25∘ spatial resolution from July 2002 to December 2020. Crop-specific burned area conversion factors for several widespread burnable crops (winter wheat, spring wheat, maize, rice, and sugarcane) were calculated from extensively mapped cropland reference regions spanning 191 560 fields over 5 different countries. We found global annual cropland burned area (2003–2020) ranged between 64 Mha (2018) and 102 Mha (2008) with an average of 81 Mha using our lower-bound estimates, which are substantially higher than the annual average of 32 Mha in the MCD64A1 C6 product. Region-specific trend analysis found some areas with significant increasing trends (northwest India), while the heterogeneity of many other regions showed no burned area trends. The GloCAB product is freely accessible at https://doi.org/10.5281/zenodo.7860452 (Hall et al., 2023).
Funder
National Aeronautics and Space Administration Air Force Office of Scientific Research
Publisher
Copernicus GmbH
Reference78 articles.
1. Abera, T. A., Heiskanen, J., Pellikka, P. K. E., Adhikari, H., and Maeda, E. E.: Climatic impacts of bushland to cropland conversion in Eastern Africa, Sci. Total Environ., 717, 137255, https://doi.org/10.1016/j.scitotenv.2020.137255, 2020. 2. Agarwal, R., Awasthi, A., Singh, N., Mittal, S. K., and Gupta, P. K.: Epidemiological study on healthy subjects affected by agriculture crop-residue burning episodes and its relation with their pulmonary function tests, Int. J. Environ. Heal. R., 23, 281–295, https://https://doi.org/10.1080/09603123.2012.733933, 2013. 3. Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-driven decline in global burned area, Science, 356, 1356–1362, https://https://doi.org/10.1126/science.aal4108, 2017. 4. Arctic Black Carbon impacting on Climate and Air Pollution (ABC-iCAP). Action 7.1: Mitigate open biomass burning on cropland, https://bc-policy-landscape.amap.no/action/action-7-1-mitigate-open-biomass-burning-on-cropland (last access: 7 February 2024), 2022. 5. Arora, V. K. and Melton, J. R.: Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land, Nat. Commun., 9, 1326, https://https://doi.org/10.1038/s41467-018-03838-0, 2018.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|