A 12-year climate record of wintertime wave-affected marginal ice zones in the Atlantic Arctic based on CryoSat-2

Author:

Zhu Weixin,Liu Siqi,Xu ShimingORCID,Zhou LuORCID

Abstract

Abstract. The wave-affected marginal ice zone (MIZ) is an essential part of the sea ice cover and crucial to the atmosphere–ice–ocean interaction in the polar region. While we primarily rely on in situ campaigns for studying MIZs, significant challenges exist for the remote sensing of MIZs by satellites. This study develops a novel retrieval algorithm for wave-affected MIZs based on the delay-Doppler radar altimeter on board CryoSat-2 (CS2). CS2 waveform power and waveform stack statistics are used to determine the part of the sea ice cover affected by waves. Based on the CS2 data since 2010, we generate a climate record of wave-affected MIZs in the Atlantic Arctic, spanning 12 winters between 2010 and 2022 (https://doi.org/10.5281/zenodo.8176585, Zhu et al., 2023). The MIZ record indicates no significant change in the mean MIZ width or the extreme width, although large temporal and spatial variability is present. In particular, extremely wide MIZ events (over 300 km) are observed in the Barents Sea, whereas in other parts of the Atlantic Arctic, MIZ events are typically narrower. We also compare the CS2-based retrieval with the retrievals based on the laser altimeter of ICESat2 and the synthetic aperture radar images from Sentinel-1. Under spatial and temporal collocation, we attain good agreement among the MIZ retrievals based on the three different types of satellite payloads. Moreover, the traditional sea-ice-concentration-based definition of MIZ yields systematically narrower MIZs than CS2, and no statistically significant correlation exists between the two. Beyond its application to CS2, the proposed retrieval algorithm can be adapted to historical and future radar altimetry campaigns. The synergy of multiple satellites can improve the spatial and temporal representation of the altimeters' observation of the MIZs.

Funder

National Key Research and Development Program of China

Norges Forskningsråd

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3