Terminology as a key uncertainty in net land use and land cover change carbon flux estimates

Author:

Pongratz J.ORCID,Reick C. H.,Houghton R. A.ORCID,House J. I.

Abstract

Abstract. Reasons for the large uncertainty in land use and land cover change (LULCC) emissions go beyond recognized issues related to the available data on land cover change and the fact that model simulations rely on a simplified and incomplete description of the complexity of biological and LULCC processes. The large range across published LULCC emission estimates is also fundamentally driven by the fact that the net LULCC flux is defined and calculated in different ways across models. We introduce a conceptual framework that allows us to compare the different types of models and simulation setups used to derive land use fluxes. We find that published studies are based on at least nine different definitions of the net LULCC flux. Many multi-model syntheses lack a clear agreement on definition. Our analysis reveals three key processes that are accounted for in different ways: the land use feedback, the loss of additional sink capacity, and legacy (regrowth and decomposition) fluxes. We show that these terminological differences, alone, explain differences between published net LULCC flux estimates that are of the same order as the published estimates themselves. This has consequences for quantifications of the residual terrestrial sink: the spread in estimates caused by terminological differences is conveyed to those of the residual sink. Furthermore, the application of inconsistent definitions of net LULCC flux and residual sink has led to double-counting of fluxes in the past. While the decision to use a specific definition of the net LULCC flux will depend on the scientific application and potential political considerations, our analysis shows that the uncertainty of the net LULCC flux can be substantially reduced when the existing terminological confusion is resolved.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3