Changing sources and processes sustaining surface CO<sub>2</sub> and CH<sub>4</sub> fluxes along a tropical river to reservoir system

Author:

Soued CynthiaORCID,Prairie Yves T.

Abstract

Abstract. Freshwaters are important emitters of carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases (GHGs). While aquatic surface GHG fluxes have been extensively measured, there is much less information about their underlying sources. In lakes and reservoirs, surface GHG can originate from horizontal riverine flow, the hypolimnion, littoral sediments, and water column metabolism. These sources are generally studied separately, leading to a fragmented assessment of their relative role in sustaining CO2 and CH4 surface fluxes. In this study, we quantified sources and sinks of CO2 and CH4 in the epilimnion along a hydrological continuum in a permanently stratified tropical reservoir (Borneo). Results showed that horizontal inputs are an important source of both CO2 and CH4 (>90 % of surface emissions) in the upstream reservoir branches. However, this contribution fades along the hydrological continuum, becoming negligible in the main basin of the reservoir, where CO2 and CH4 are uncoupled and driven by different processes. In the main basin, vertical CO2 inputs and sediment CH4 inputs contributed to on average 60 % and 23 % respectively to the surface fluxes of the corresponding gas. Water column metabolism exhibited wide amplitude and range for both gases, making it a highly variable component, but with a large potential to influence surface GHG budgets in either direction. Overall our results show that sources sustaining surface CO2 and CH4 fluxes vary spatially and between the two gases, with internal metabolism acting as a fluctuating but key modulator. However, this study also highlights challenges and knowledge gaps related to estimating ecosystem-scale CO2 and CH4 metabolism, which hinder aquatic GHG flux predictions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3