Impacts of post-depositional processing on nitrate isotopes in the snow and the overlying atmosphere at Summit, Greenland

Author:

Jiang ZhuangORCID,Savarino JoelORCID,Alexander BeckyORCID,Erbland JosephORCID,Jaffrezo Jean-Luc,Geng Lei

Abstract

Abstract. The effect of post-depositional processing on the preservation of snow nitrate isotopes at Summit, Greenland, remains a subject of debate and is relevant to the quantitative interpretation of ice-core nitrate (isotopic) records at high snow accumulation sites. Here we present the first year-round observations of atmospheric nitrate and its isotopic compositions at Summit and compare them with published surface snow and snowpack observations. The atmospheric δ15N(NO3-) remained negative throughout the year, ranging from −3.1 ‰ to −47.9 ‰ with a mean of (−14.8 ± 7.3) ‰ (n=54), and displayed minima in spring which are distinct from the observed spring δ15N(NO3-) maxima in snowpack. The spring average atmospheric δ15N(NO3-) was (−17.9 ± 8.3) ‰ (n=21), significantly depleted compared to the snowpack spring average of (4.6 ± 2.1) ‰, while the surface snow δ15N(NO3-) of (−6.8 ± 0.5) ‰ was in between the atmosphere and the snowpack. The differences in atmospheric, surface snow and snowpack δ15N(NO3-) are best explained by the photo-driven post-depositional processing of snow nitrate, with potential contributions from fractionation during nitrate deposition. In contrast to δ15N(NO3-), the atmospheric Δ17O(NO3-) was of a similar seasonal pattern and magnitude of change to that in the snowpack, suggesting little to no changes in Δ17O(NO3-) from photolysis, consistent with previous modeling results. The atmospheric δ18O(NO3-) varied similarly to atmospheric Δ17O(NO3-), with summer low and winter high values. However, the difference between atmospheric and snow δ18O(NO3-) was larger than that of Δ17O(NO3-). We found a strong correlation between atmospheric δ18O(NO3-) and Δ17O(NO3-) that is very similar to previous measurements for surface snow at Summit, suggesting that atmospheric δ18O(NO3-) versus Δ17O(NO3-) relationships were conserved during deposition. However, we found the linear relationships between δ18O and Δ17O(NO3-) were significantly different for snowpack compared to atmospheric samples. This likely suggests the oxygen isotopes are also affected before preservation in the snow at Summit, but the degree of change for δ18O(NO3-) should be larger than that of Δ17O(NO3-). This is because photolysis is a mass-dependent process that would directly affect δ18O(NO3-) in snow but not Δ17O(NO3-) as the latter is a mass-independent signal. Although there were uncertainties associated with the complied dataset, the results suggested that post-depositional processing at Summit can induce changes in nitrate isotopes, especially δ15N(NO3-), consistent with a previous modeling study. This reinforces the importance of understanding the effects of post-depositional processing before ice-core nitrate isotope interpretation, even for sites with relatively high snow accumulation rates.

Funder

National Science Foundation

Agence Nationale de la Recherche

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3