Kinematic and reduced-dynamic precise orbit determination of low earth orbiters

Author:

Švehla D.,Rothacher M.

Abstract

Abstract. Various methods for kinematic and reduced-dynamic precise orbit determination (POD) of Low Earth Orbiters (LEO) were developed based on zero- and double-differencing of GPS carrier-phase measurements with and without ambiguity resolution. In this paper we present the following approaches in LEO precise orbit determination: – zero-difference kinematic POD, – zero-difference dynamic POD, – double-difference kinematic POD with and without ambiguity resolution, – double-difference dynamic POD with and without ambiguity resolution, – combined GPS/SLR reduced-dynamic POD. All developed POD approaches except the combination of GPS/SLR were tested using real CHAMP data (May 20-30, 2001) and independently validated with Satellite Laser Ranging (SLR) data over the same 11 days. With SLR measurements, additional combinations are possible and in that case one can speak of combined kinematic or combined reduced-dynamic POD. First results of such a combined GPS/SLR POD will be presented, too. This paper shows what LEO orbit accuracy may be achieved with GPS using different strategies including zerodifference and double-difference approaches. Kinematic versus dynamic orbit determination is presently an interesting issue that will also be discussed in this article.Key words. POD, kinematic orbit, dynamic orbit, LEO, CHAMP, ambiguity resolution, GPS, SLR

Publisher

Copernicus GmbH

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3