Bering Sea surface water conditions during Marine Isotope Stages 12 to 10 at
Navarin Canyon (IODP Site U1345)
-
Published:2016-09-01
Issue:9
Volume:12
Page:1739-1763
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Caissie Beth E.ORCID, Brigham-Grette Julie, Cook Mea S., Colmenero-Hidalgo Elena
Abstract
Abstract. Records of past warm periods are essential for understanding interglacial climate system dynamics. Marine Isotope Stage 11 occurred from 425 to 394 ka, when global ice volume was the lowest, sea level was the highest, and terrestrial temperatures were the warmest of the last 500 kyr. Because of its extreme character, this interval has been considered an analog for the next century of climate change. The Bering Sea is ideally situated to record how opening or closing of the Pacific–Arctic Ocean gateway (Bering Strait) impacted primary productivity, sea ice, and sediment transport in the past; however, little is known about this region prior to 125 ka. IODP Expedition 323 to the Bering Sea offered the unparalleled opportunity to look in detail at time periods older than had been previously retrieved using gravity and piston cores. Here we present a multi-proxy record for Marine Isotope Stages 12 to 10 from Site U1345, located near the continental shelf-slope break. MIS 11 is bracketed by highly productive laminated intervals that may have been triggered by flooding of the Beringian shelf. Although sea ice is reduced during the early MIS 11 laminations, it remains present at the site throughout both glacials and MIS 11. High summer insolation is associated with higher productivity but colder sea surface temperatures, which implies that productivity was likely driven by increased upwelling. Multiple examples of Pacific–Atlantic teleconnections are presented including laminations deposited at the end of MIS 11 in synchrony with millennial-scale expansions in sea ice in the Bering Sea and stadial events seen in the North Atlantic. When global eustatic sea level was at its peak, a series of anomalous conditions are seen at U1345. We examine whether this is evidence for a reversal of Bering Strait throughflow, an advance of Beringian tidewater glaciers, or a turbidite.
Funder
Office of Polar Programs Consortium for Ocean Leadership
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Global and Planetary Change
Reference143 articles.
1. Aizawa, C., Tanimoto, M., and Jordan, R. W.: Living diatom assemblages from North Pacific and Bering Sea surface waters during summer 1999, Deep-Sea Res. Pt. I, 52, 2186–2205, 2005. 2. Alexander, V. and Chapman, T.: The role of epontic algal communities in Bering Sea ice, in: The Eastern Bering Sea Shelf: Oceanography and Resources, edited by: Hood, D. W. and Calder, J. A., University of Washington Press, Seattle, Washington, 1981. 3. Asahi, H., Kender, S., Ikehara, M., Sakamoto, T., Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A., Khim, B. K., and Leng, M. J.: Orbital-scale benthic foraminiferal oxygen isotope stratigraphy at the northern Bering Sea Slope Site U1343 (IODP Expedition 323) and its Pleistocene paleoceanographic significance, Deep-Sea Res. Pt. II, 125/126, 66–83, 2016. 4. Barr, I. D. and Clark, C. D.: Distribution and pattern of moraines in Far NE Russia reveal former glacial extent, Journal of Maps, 5, 186–193, 2009. 5. Barron, J. A., Bukry, D., Dean, W. E., Addison, J. A., and Finney, B.: Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry, Mar. Micropaleontol., 72, 176–195, 2009.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|