Stability of solar correction for calculating ionospheric trends

Author:

Laštovička JanORCID,Burešová DaliaORCID,Kouba Daniel,Križan Peter

Abstract

Abstract. Global climate change affects the whole atmosphere, including the thermosphere and ionosphere. Calculations of long-term trends in the ionosphere are critically dependent on solar activity (solar cycle) correction of ionospheric input data. The standard technique is to establish an experimental model via calculating the dependence of ionospheric parameter on solar activity from the whole analysed data set, subtract these model data from observed data and analyse the trend of residuals. However, if the solar activity dependence changes with time, the solar correction calculated from the whole data set may result in miscalculating the ionospheric trends. To test this, data from two European ionospheric stations – Juliusruh and Slough/Chilton – which provide long-term reliable data, have been used for the period 1975–2014. The main result of this study is the finding that the solar activity correction used in calculating ionospheric long-term trends need not be stable, as was assumed in all previous investigations of ionospheric trends. During the previous solar cycle 23 and the current solar cycle 24, the solar activity correction appears to be different from that for the previous period and the Sun seems to behave in a different way than throughout the whole previous era of ionospheric measurements. In future ionospheric trend investigations the non-stability of solar activity correction has to be very seriously taken into account, because it can substantially affect calculated long-term trends of ionospheric parameters.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3