Representation of the kinematic topology of mechanisms for kinematic analysis

Author:

Müller A.

Abstract

Abstract. The kinematic modeling of multi-loop mechanisms requires a systematic representation of the kinematic topology, i.e. the arrangement of links and joints. A linear graph, called the topological graph, is used to this end. Various forms of this graph have been introduced for application in mechanism kinematics and multibody dynamics aiming at matrix formulations of the governing equations. For the (higher-order) kinematic analysis of mechanisms a simple yet stringent representation of the topological information is often sufficient. This paper proposes a simple concept and notation for use in kinematic analysis. Upon a topological graph, an order relation of links and joints is introduced allowing for recursive computation of the mechanism configuration. An ordering is also introduced on the topologically independent fundamental cycles. The latter is indispensable for formulating generically independent loop closure constraints. These are presented for linkages with only lower pairs, as well as for mechanisms with one higher kinematic pair per fundamental cycle. The corresponding formulation is known as cut-body and cut-joint approach, respectively.

Publisher

Copernicus GmbH

Subject

Industrial and Manufacturing Engineering,Fluid Flow and Transfer Processes,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in deterministic human motion prediction: A review;Image and Vision Computing;2024-03

2. Language of Kinematics as Analytical Tool for Junior TMM Students;Mechanisms and Machine Science;2024

3. Mechanical Design of a 2-PRR Parallel Manipulator for Gait Retraining System;Machines;2023-08-01

4. Dynamic Response of Mix Systems;Dynamic Modeling of Automatic Machines for Design and Control;2023

5. Multibody Dynamics;Dynamic Modeling of Automatic Machines for Design and Control;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3