High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling

Author:

Michaelis Tamara,Wunderlich AnjaORCID,Coskun Ömer K.,Orsi William,Baumann ThomasORCID,Einsiedl Florian

Abstract

Abstract. Facing the challenges of climate change, policy making relies on sound greenhouse gas (GHG) budgets. Rivers and streams emit large quantities of the potent GHG methane (CH4), but their global impact on atmospheric CH4 concentrations is highly uncertain. In situ data from the hyporheic zone (HZ), where most CH4 is produced and some of it can be oxidized to CO2, are lacking for an accurate description of CH4 production and consumption in streams. To address this, we recorded high-resolution depth-resolved geochemical profiles at five different locations in the stream bed of the river Moosach, southern Germany. Specifically, we measured pore-water concentrations and stable carbon isotopes (δ13C) of dissolved CH4 as well as relevant electron acceptors for oxidation with a 1 cm vertical depth resolution. Findings were interpreted with the help of a numerical model, and 16S rRNA gene analyses added information on the microbial community at one of the locations. Our data confirm with pore-water CH4 concentrations of up to 1000 µmol L−1 that large quantities of CH4 are produced in the HZ. Stable isotope measurements of CH4 suggest that hydrogenotrophic methanogenesis represents a dominant pathway for CH4 production in the HZ of the river Moosach, while a relatively high abundance of a novel group of methanogenic archaea, the Candidatus “Methanomethyliales” (phylum Candidatus “Verstraetearchaeota”), indicate that CH4 production through H2-dependent methylotrophic methanogenesis might also be an important CH4 source. Combined isotopic and modeling results clearly implied CH4 oxidation processes at one of the sampled locations, but due to the steep chemical gradients and the close proximity of the oxygen and nitrate reduction zones, no single electron acceptor for this process could be identified. Nevertheless, the numerical modeling results showed potential not only for aerobic CH4 oxidation but also for anaerobic oxidation of CH4 coupled to denitrification. In addition, the nitrate–methane transition zone was characterized by an increased relative abundance of microbial groups (Crenothrix, NC10) known to mediate nitrate and nitrite-dependent methane oxidation in the hyporheic zone. This study demonstrates substantial CH4 production in hyporheic sediments, a potential for aerobic and anaerobic CH4 oxidation, and underlines the high spatiotemporal variability in this habitat.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3