Wind speed influences corrected Autocalibrated Soil Evapo-respiration Chamber (ASERC) evaporation measures

Author:

Zawilski Bartosz M.ORCID

Abstract

Abstract. Soil evaporation concerns water and our life support sources, which are important for agriculture or for climate change prediction science. A simple instrument based on the nonsteady-state (NSS) technique for soil evaporation measurement appears suitable. However, because the NSS chamber technique is highly invasive, special care should be provided to correct the wind speed influence on the evaporation process. Soil evaporation is a complex process that involves many soil and air characteristics. Measurement chamber installation on the soil and its head deployment may perturb these characteristics. We therefore had to minimize differences or to correct the measurements. Most of the differences between bare soil and soil with a deployed chamber head can be minimized, except for the wind speed influences that are not reproducible inside a chamber head. Meanwhile, as the wind influences depend on numerous variables that are not monitorable in real time, a self-calibrating chamber with a corresponding protocol called the Autocalibrated Soil Evapo-respiration Chamber (ASERC) was developed to make the measurements easily corrigible on bare soil with a unique variable (wind speed, WS), regardless of the soil composition, soil texture, and other soil or air meteorological variables. A simple protocol followed by this chamber allows us to determine the soil evaporation wind speed susceptibility (Z) and to correct the measurements achieving 0.95 as the coefficient of determination. Some interesting findings on sandy and clayey soil evaporation measured during laboratory calibration and “slow” sensor simulation will also be reported in the two appendices.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3