Age of stratospheric air in the ERA-Interim

Author:

Diallo M.ORCID,Legras B.ORCID,Chédin A.

Abstract

Abstract. The Brewer-Dobson mean circulation and its variability are investigated in the ERA-Interim over the period 1989-2010 by using an off-line Lagrangian transport model driven by analysed winds and heating rates. At low and mid-latitudes, the mean age of air in the lower stratosphere is in good agreement with ages derived from aircraft, high altitude balloon and satellite observations of long-lived tracers. At high latitude and in the upper stratosphere, we find, however that the ERA-Interim ages exhibit an old bias, typically of one to two years. The age spectrum exhibits a long tail except in the low tropical stratosphere which is modulated by the annual cycle of the tropical upwelling. The distribution of ages and its variability is consistent with the existence of two separate branches, shallow and deep, of the Brewer-Dobson circulation. Both branches are modulated by the tropical upwelling and the shallow branch is also modulated by the subtropical barrier. The variability of the mean age is analysed through a decomposition in terms of annual cycle, QBO, ENSO and trend. The annual modulation is the dominating signal in the lower stratosphere and is maximum at latitudes greater than 50° in both hemispheres with oldest ages at the end of the winter. The phase of the annual modulation is also reversed between below and above 25 km. The maximum amplitude of the QBO modulation is of about 0.5 yr and is mostly concentrated within the tropics between 25 and 35 km. It lags the QBO wind at 30 hPa by about 8 months. The ENSO signal is small and limited to the lower northen stratosphere. The age trend over the 1989–2010 period, according to this ERA-Interim dataset, is significant and negative, of the order of −0.3 to −0.5 yr dec−1, within the lower stratosphere in the Southern Hemisphere and south of 40° N in the Northern Hemisphere below 25 km. The age trend is positive (of the order of 0.3 yr dec−1) in the mid stratosphere but there is no region of consistent significance. This suggests that the shallow and deep Brewer-Dobson circulations may evolve in opposite directions. Finally, we find that the long lasting influence of the Pinatubo eruption can be seen on the age of air from June 1991 until the end of 1993 and can bias the statistics encompassing this period.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference81 articles.

1. Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Hintsa, E. J., Weinstock, E. M., and Bui, T. P.: Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2: Implications for stratospheric transport, J. Geophys. Res., 104, 26581–26596 https://doi.org/10.1029/1999JD900150, 1999.

2. Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Loewenstein, M., Jost, H., Podolske, J. R., Webster, C. R., Herman, R. L., Scott, D. C., Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F., Moore, F. L., Ray, E. A., Romashkin, P. A., and Strahan, S. E.: Mean age of stratospheric air derived from in situ observations of CO2, CH4 and N2O, J. Geophys. Res., 106, 32295–32314, https://doi.org/10.1029/2001JD000465, 2001{a}.

3. Andrews, A. E., Boering, K. A., Wofsy, S. C., Daube, B. C., Jones, D. B., Alex, S., Loewenstein, M., Podolske, J. R., and Strahan, S. E.: Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2}: {quantitative evidence for a sub-tropical barrier to horizontal transport, J. Geophys. Res., 106, 32295–32314, https://doi.org/10.1029/2001JD000465, 2001{b}.

4. Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, vol. 40 of International Geophysics Series, Academic Press, San Diego, USA, 1987.

5. Austin, J. and Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, https://doi.org/10.1029/2006GL026867, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3