MAREDAT: towards a world atlas of MARine Ecosystem DATa
-
Published:2013-07-12
Issue:2
Volume:5
Page:227-239
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Buitenhuis E. T.ORCID, Vogt M., Moriarty R.ORCID, Bednaršek N., Doney S. C., Leblanc K., Le Quéré C., Luo Y.-W., O'Brien C., O'Brien T., Peloquin J., Schiebel R., Swan C.
Abstract
Abstract. We present a summary of biomass data for 11 plankton functional types (PFTs) plus phytoplankton pigment data, compiled as part of the MARine Ecosystem biomass DATa (MAREDAT) initiative. The goal of the MAREDAT initiative is to provide, in due course, global gridded data products with coverage of all planktic components of the global ocean ecosystem. This special issue is the first step towards achieving this. The PFTs presented here include picophytoplankton, diazotrophs, coccolithophores, Phaeocystis, diatoms, picoheterotrophs, microzooplankton, foraminifers, mesozooplankton, pteropods and macrozooplankton. All variables have been gridded onto a World Ocean Atlas (WOA) grid (1° × 1° × 33 vertical levels × monthly climatologies). The results show that abundance is much better constrained than their carbon content/elemental composition, and coastal seas and other high productivity regions have much better coverage than the much larger volumes where biomass is relatively low. The data show that (1) the global total heterotrophic biomass (2.0–4.6 Pg C) is at least as high as the total autotrophic biomass (0.5–2.4 Pg C excluding nanophytoplankton and autotrophic dinoflagellates); (2) the biomass of zooplankton calcifiers (0.03–0.67 Pg C) is substantially higher than that of coccolithophores (0.001–0.03 Pg C); (3) patchiness of biomass distribution increases with organism size; and (4) although zooplankton biomass measurements below 200 m are rare, the limited measurements available suggest that Bacteria and Archaea are not the only important heterotrophs in the deep sea. More data will be needed to characterise ocean ecosystem functioning and associated biogeochemistry in the Southern Hemisphere and below 200 m. Future efforts to understand marine ecosystem composition and functioning will be helped both by further archiving of historical data and future sampling at new locations. Microzooplankton database: doi:10.1594/PANGAEA.779970 All MAREDAT databases: http://www.pangaea.de/search?&q=maredat
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference42 articles.
1. Agustí, S.: Ubiquitous presence of healthy phytoplankton cells in the deep ocean, ASLO ocean sciences meeting, 2012. 2. Alvain, S., Moulin, C., Dandonneau, Y., and Breon, F. M.: Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep-Sea Res. Pt. I, 52, 1989–2004, 2005. 3. Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model of the global ocean including Fe, Si, P co-limitations, Global Biogeochem. Cy., 17, 1060, https://doi.org/10.1029/2001GB001745, 2003. 4. Barton, A. D., Pershing, A. J., Litchman, E., Record, N. R., Edwards, K. F., Finkel, Z. V., Kiorboe, T., and Ward, B. A.: The biogeography of marine plankton traits, Ecol. Lett., 16, 522–534, 2013. 5. Bednaršek, N., Možina, J., Vogt, M., O'Brien, C., and Tarling, G. A.: The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean, Earth Syst. Sci. Data, 4, 167–186, https://doi.org/10.5194/essd-4-167-2012, 2012.
Cited by
160 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|