Assessing vegetation structure and ANPP dynamics in a grassland–shrubland Chihuahuan ecotone using NDVI–rainfall relationships

Author:

Moreno-de las Heras M.ORCID,Díaz-Sierra R.,Turnbull L.,Wainwright J.

Abstract

Abstract. Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. In the Chihuahuan Desert, large areas of grasslands dominated by perennial grass species have transitioned over the last 150 years to shrublands dominated by woody species, accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including precipitation variations, land-use change, and soil erosion–vegetation feedbacks. In this study, using a simple ecohydrological modelling framework, we show that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant-growth and water-use patterns. Therefore, shrub encroachment may be reflected in the analysis of landscape-scale vegetation–rainfall relationships. We analyse the structure and dynamics of vegetation at an 18 km2 grassland–shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000–2013) records of remotely sensed vegetation greenness (MODIS NDVI) and antecedent rainfall. NDVI–rainfall relationships show a high sensitivity to spatial variations on dominant vegetation types across the grassland–shrubland ecotone, and provide biophysical criteria to (a) classify landscape types as a function of the spatial distribution of dominant vegetation and to (b) decompose the NDVI signal into partial components of annual net primary production (ANPP) for herbaceous vegetation and shrubs. Analysis of remotely sensed ANPP dynamics across the study site indicates that plant growth for herbaceous vegetation is particularly synchronized with monsoonal summer rainfall. For shrubs, ANPP is better explained by winter plus summer precipitation, overlapping the monsoonal period (June–September) of rain concentration. Our results suggest that shrub encroachment was not particularly active in this Chihuahuan ecotone for the period 2000–2013. However, future changes in the amount and temporal pattern of precipitation (i.e. reductions in monsoonal summer rainfall and/or increases in winter precipitation) may enhance the shrub-encroachment process, particularly in the face of expected upcoming increases in aridity for desert grasslands of the southwestern USA.

Funder

Seventh Framework Programme

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3