Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing

Author:

Ricaud PhilippeORCID,Del Guasta MassimoORCID,Lupi Angelo,Roehrig Romain,Bazile EricORCID,Durand Pierre,Attié Jean-Luc,Nicosia AlessiaORCID,Grigioni Paolo

Abstract

Abstract. Clouds affect the Earth climate with an impact that depends on the cloud nature (solid and/or liquid water). Although the Antarctic climate is changing rapidly, cloud observations are sparse over Antarctica due to few ground stations and satellite observations. The Concordia station is located on the eastern Antarctic Plateau (75∘ S, 123∘ E; 3233 m above mean sea level), one of the driest and coldest places on Earth. We used observations of clouds, temperature, liquid water, and surface irradiance performed at Concordia during four austral summers (December 2018–2021) to analyse the link between liquid water and temperature and its impact on surface irradiance in the presence of supercooled liquid water (liquid water for temperature less than 0 ∘C) clouds (SLWCs). Our analysis shows that, within SLWCs, temperature logarithmically increases from −36.0 to −16.0 ∘C when liquid water path increases from 1.0 to 14.0 g m−2. The SLWC radiative forcing is positive and logarithmically increases from 0.0 to 70.0 W m−2 when liquid water path increases from 1.2 to 3.5 g m−2. This is mainly due to the downward longwave component that logarithmically increases from 0 to 90 W m−2 when liquid water path increases from 1.0 to 3.5 g m−2. The attenuation of shortwave incoming irradiance (that can reach more than 100 W m−2) is almost compensated for by the upward shortwave irradiance because of high values of surface albedo. Based on our study, we can extrapolate that, over the Antarctic continent, SLWCs have a maximum radiative forcing that is rather weak over the eastern Antarctic Plateau (0 to 7 W m−2) but 3 to 5 times larger over West Antarctica (0 to 40 W m−2), maximizing in summer and over the Antarctic Peninsula.

Funder

Institut Polaire Français Paul Emile Victor

Institut national des sciences de l'Univers

Centre National de la Recherche Scientifique

Centre National d’Etudes Spatiales

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3