Temperature-dependent aqueous OH kinetics of C2–C10 linear and terpenoid alcohols and diols: new rate coefficients, structure–activity relationship, and atmospheric lifetimes

Author:

Witkowski BartłomiejORCID,Jain PriyankaORCID,Wileńska Beata,Gierczak Tomasz

Abstract

Abstract. Aliphatic alcohols (AAs), including terpenoic alcohols (TAs), are ubiquitous in the atmosphere due to their widespread emissions from natural and anthropogenic sources. Hydroxyl radical (OH) is the most important atmospheric oxidant in both aqueous and gas phases. Consequently, the aqueous oxidation of the TAs by the OH inside clouds and fogs is a potential source of aqueous secondary organic aerosols (aqSOAs). However, the kinetic data, necessary for estimating the timescales of such reactions, remain limited. Here, bimolecular rate coefficients (kOHaq) for the aqueous oxidation of 29 C2–C10 AAs by hydroxyl radicals (OH) were measured with the relative rate technique in the temperature range 278–328 K. The values of kOHaq for the 15 AAs studied in this work were measured for the first time after validating the experimental approach. The kOHaq values measured for the C2–C10 AAs at 298 K ranged from 1.80 × 109 to 6.5 × 109 M−1 s−1. The values of activation parameters, activation energy (7–17 kJ mol−1), and average Gibbs free energy of activation (18 ± 2 kJ mol−1) strongly indicated the predominance of the H-atom abstraction mechanism. The estimated rates of the complete diffusion-limited reactions revealed up to 44 % diffusion contribution for the C8–C10 AAs. The data acquired in this work and the values of kOHaq for AAs, carboxylic acids, and carboxylate ions available in the literature were used to develop a modified structure–activity relationship (SAR). The SAR optimized in this work estimated the temperature-dependent kOHaq for all compounds under investigation with much higher accuracy compared to the previous models. In the new model, an additional neighboring parameter was introduced (F≥ (CH2)6), using the kOHaq values for the homolog (C2–C10) linear alcohols and diols. A good overall accuracy of the new SAR at 298 K (slope = 1.022, R2=0.855) was obtained for the AAs and carboxylic acids under investigation. The kinetic database (kOHaq values in this work and compiled literature data) was also used to further enhance the ability of SAR to predict temperature-dependent values of kOHaq in the temperature range 278–328 K. The calculated atmospheric lifetimes indicate that terpenoic alcohols and diols can react with the OH in aerosol, cloud, and fog water with liquid water content (LWC) ≥0.1 g m−3 and LWC ≥ 10−4 g m−3, respectively. The preference of terpenoic diols to undergo aqueous oxidation by the OH under realistic atmospheric conditions is comparable with terpenoic acids, making them potentially effective precursors of aqSOAs. In clouds, a decrease in the temperature will strongly promote the aqueous reaction with the OH, primarily due to the increased partitioning of WSOCs into the aqueous phase.

Funder

Narodowe Centrum Nauki

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3