Superparameterised cloud effects in the EMAC general circulation model (v2.50) – influences of model configuration

Author:

Rybka HaraldORCID,Tost HolgerORCID

Abstract

Abstract. A new module has been implemented in the fifth generation of the ECMWF/Hamburg (ECHAM5)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model that simulates cloud-related processes on a much smaller grid. This so-called superparameterisation acts as a replacement for the convection parameterisation and large-scale cloud scheme. The concept of embedding a cloud-resolving model (CRM) inside of each grid box of a general circulation model leads to an explicit representation of cloud dynamics. The new model component is evaluated against observations and the conventional usage of EMAC using a convection parameterisation. In particular, effects of applying different configurations of the superparameterisation are analysed in a systematical way. Consequences of changing the CRM's orientation, cell size and number of cells range from regional differences in cloud amount up to global impacts on precipitation distribution and its variability. For some edge case setups, the analysed climate state of superparameterised simulations even deteriorates from the mean observed energy budget. In the current model configuration, different climate regimes can be formed that are mainly driven by some of the parameters of the CRM. Presently, the simulated total cloud cover is at the lower edge of the CMIP5 model ensemble. However, certain “tuning” of the current model configuration could improve the slightly underestimated cloud cover, which will result in a shift of the simulated climate. The simulation results show that especially tropical precipitation is better represented with the superparameterisation in the EMAC model configuration. Furthermore, the diurnal cycle of precipitation is heavily affected by the choice of the CRM parameters. However, despite an improvement of the representation of the continental diurnal cycle in some configurations, other parameter choices result in a deterioration compared to the reference simulation using a conventional convection parameterisation. The ability of the superparameterisation to represent latent and sensible heat flux climatology is independent of the chosen CRM setup. Evaluation of in-atmosphere cloud amounts depending on the chosen CRM setup shows that cloud development can significantly be influenced on the large scale using a too-small CRM domain size. Therefore, a careful selection of the CRM setup is recommended using 32 or more CRM cells to compensate for computational expenses.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3