Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
-
Published:2020-05-06
Issue:5
Volume:13
Page:2149-2167
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Pascoe CharlotteORCID, Lawrence Bryan N.ORCID, Guilyardi EricORCID, Juckes Martin, Taylor Karl E.ORCID
Abstract
Abstract. Numerical simulation, and in particular simulation of the earth system, relies on contributions from diverse communities, from those who develop models to those involved in devising, executing, and analysing numerical experiments.
Often these people work in different institutions and may be working with significant separation in time (particularly analysts, who may be working on data produced years earlier), and they typically communicate via published information (whether journal papers, technical notes, or websites).
The complexity of the models, experiments, and methodologies, along with the diversity (and sometimes inexact nature) of information sources, can easily lead to misinterpretation of what was actually intended or done.
In this paper we introduce a taxonomy of terms for more clearly defining numerical experiments, put it in the context of previous work on experimental ontologies, and describe how we have used it to document the experiments of the sixth phase for the Coupled Model Intercomparison Project (CMIP6).
We describe how, through iteration with a range of CMIP6 stakeholders, we rationalized multiple sources of information and improved the clarity of experimental definitions.
We demonstrate how this process has added value to CMIP6 itself by (a) helping those devising experiments to be clear about their goals and their implementation, (b) making it easier for those executing experiments to know what is intended, (c) exposing interrelationships between experiments, and (d) making it clearer for third parties (data users) to understand the CMIP6 experiments.
We conclude with some lessons learnt and how these may be applied to future CMIP phases as well as other modelling campaigns.
Funder
Horizon 2020 Office of Science Seventh Framework Programme
Publisher
Copernicus GmbH
Reference50 articles.
1. Balaji, V., Taylor, K. E., Juckes, M., Lawrence, B. N., Durack, P. J., Lautenschlager, M., Blanton, C., Cinquini, L., Denvil, S., Elkington, M., Guglielmo, F., Guilyardi, E., Hassell, D., Kharin, S., Kindermann, S., Nikonov, S., Radhakrishnan, A., Stockhause, M., Weigel, T., and Williams, D.: Requirements for a global data infrastructure in support of CMIP6, Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, 2018. a 2. Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016. 3. Borst, W. N.: Construction of Engineering Ontologies for Knowledge
Sharing and Reuse, Ph.D. thesis, University of Twente, Centre for
Telematics and Information Technology (CTIT), Enschede, 1997. a 4. Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl,
J. T., Treut, H. L., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcrette,
J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A.,
Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.:
Interpretation of Cloud-Climate Feedback as Produced by 14
Atmospheric General Circulation Models, Science, 245, 513–516,
https://doi.org/10.1126/science.245.4917.513, 1989. a 5. Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017, 2017.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|