Overcoming challenges in the classification of deep geothermal potential

Author:

Breede K.,Dzebisashvili K.,Falcone G.

Abstract

<p><strong>Abstract.</strong> The geothermal community lacks a universal definition of deep geothermal systems. A minimum depth of 400 m is often assumed, with a further sub-classification into middle-deep geothermal systems for reservoirs found between 400 and 1000 m. Yet, the simplistic use of a depth cut-off is insufficient to uniquely determine the type of resource and its associated potential. Different definitions and criteria have been proposed in the past to frame deep geothermal systems. However, although they have valid assumptions, these frameworks lack systematic integration of correlated factors. To further complicate matters, new definitions such as hot dry rock (HDR), enhanced or engineered geothermal systems (EGSs) or deep heat mining have been introduced over the years. A clear and transparent approach is needed to estimate the potential of deep geothermal systems and be capable of distinguishing between resources of a different nature. In order to overcome the ambiguity associated with some past definitions such as EGS, this paper proposes the return to a more rigorous petrothermal versus hydrothermal classification. This would be superimposed with numerical criteria for the following: depth and temperature; predominance of conduction, convection or advection; formation type; rock properties; heat source type; requirement for formation stimulation and corresponding efficiency; requirement to provide the carrier fluid; well productivity (or injectivity); production (or circulation) flow rate; and heat recharge mode. Using the results from data mining of past and present deep geothermal projects worldwide, a classification of the same, according to the aforementioned criteria is proposed.</p>

Publisher

Copernicus GmbH

Subject

Economic Geology,Geochemistry and Petrology,Renewable Energy, Sustainability and the Environment

Reference166 articles.

1. AGRCC: Australian Geothermal Reporting Code Committee: Geothermal lexicon for resources and reserves definition and reporting, 2nd edn. Australian Geothermal Reporting Code Committee, Adelaide, p. 67, 2010.

2. Atkins Ltd: Deep Geothermal Review Study, Version 5.0, 21 October 2013.

3. Baria, R., Bennett, T., Macpherson-Grant, G., Baumgaertner, J., and Jupe, A.: Cornish Rocks – Hotting Up? European Geothermal Congress (EGC) 2013, Pisa, Italy, 3–7 June 2013.

4. Barnet, P.: Large scale hot sedimentary aquifer (HSA) geothermal projects, Presentation to Victoria Energy Conference, Melbourne, 27 August 2009.

5. Baumgärtner, J.: Insheim and Landau – recent experiences with EGS technology in the Upper Rhine Graben, oral presentation presented at ICEGS 2012, Freiburg, 25 May 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3