Introducing the MISR level 2 near real-time aerosol product
-
Published:2021-08-17
Issue:8
Volume:14
Page:5577-5591
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Witek Marcin L.ORCID, Garay Michael J., Diner David J., Bull Michael A., Seidel Felix C.ORCID, Nastan Abigail M., Hansen Earl G.
Abstract
Abstract. Atmospheric aerosols are an important element of Earth's climate system and
have significant impacts on the environment and on human health. Global
aerosol modeling has been increasingly used for operational forecasting and
as support for decision making. For example, aerosol analyses and forecasts
are routinely used to provide air quality information and alerts in both
civilian and military applications. The growing demand for operational
aerosol forecasting calls for additional observational data that can be
assimilated into models to improve model accuracy and predictive skill.
These factors have motivated the development, testing, and release of a new
near real-time (NRT) level 2 (L2) aerosol product from the Multi-angle
Imaging SpectroRadiometer (MISR) instrument on NASA's Terra platform. The
NRT product capitalizes on the unique attributes of the MISR aerosol
retrieval approach and product contents, such as reliable aerosol optical
depth as well as aerosol microphysical information. Several modifications
are described that allow for rapid product generation within a 3 h
window following acquisition of the satellite observations. Implications for
the product quality and consistency are discussed and compared to the current
operational L2 MISR aerosol product. Several ways of implementing additional
use-specific retrieval screenings are also highlighted.
Funder
Jet Propulsion Laboratory
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference61 articles.
1. Ackerman, S., Richard, F., Kathleen, S., Yinghui, L., Liam, G., Bryan, B.,
and Paul, M.: Discriminating clear-sky from cloud with MODIS algorithm
theoretical basis document (MOD35), Univ. Wisconsin – Madison, 6th
Edn. (October), 129, available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.4885 (last access: 6 August 2021), 2010. 2. Benedetti, A., Reid, J. S., and Colarco, P. R.: International cooperative for
aerosol prediction workshop on aerosol forecast verification, B.
Am. Meteorol. Soc., 92, ES48–ES53, https://doi.org/10.1175/BAMS-D-11-00105.1, 2011. 3. Benedetti, A., Reid, J. S., Knippertz, P., Marsham, J. H., Di Giuseppe, F., Rémy, S., Basart, S., Boucher, O., Brooks, I. M., Menut, L., Mona, L., Laj, P., Pappalardo, G., Wiedensohler, A., Baklanov, A., Brooks, M., Colarco, P. R., Cuevas, E., da Silva, A., Escribano, J., Flemming, J., Huneeus, N., Jorba, O., Kazadzis, S., Kinne, S., Popp, T., Quinn, P. K., Sekiyama, T. T., Tanaka, T., and Terradellas, E.: Status and future of numerical atmospheric aerosol prediction with a focus on data requirements, Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, 2018. 4. Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015. 5. Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr, R.: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-15-5743-2015, 2015.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|