Transforming living labs into lighthouses: a promising policy to achieve land-related sustainable development

Author:

Bouma Johan

Abstract

Abstract. The previous rather abstract debate about sustainable development has been focused by the introduction of the United Nations (UN) Sustainable Development Goals (SDGs) in 2015 and the related European Union (EU) Green Deal (GD) in 2019. Restricting attention to agriculture, proposed targets and indicators are, however, not specific enough to allow a focus for developing innovative and sustainable management practices. Clarity is needed because farmers are suspicious of governmental actions. To confront these problems, the European Commission (EC) has presented the Mission concept that requires joint learning between farmers, scientists and citizens. For the soil mission, “living labs” are proposed that should evolve into “lighthouses” when environmental thresholds for each of at least six land-related ecosystem services are met. This presents “wicked” problems that can be “tamed” by measuring indicators for ecosystem services that are associated with the land-related SDGs in a given living lab. Thresholds with a character that is occasionally regional are needed to separate the “good” from the “not yet good enough”. Contributions by the soil to ecosystem services can be expressed by assessing soil health. By introducing the mission concept, the policy arena challenges the research community to rise to the occasion by developing effective interaction models with farmers and citizens that can be the foundation for innovative and effective environmental rules and regulations. We argue and illustrate with a specific example, that establishing Living Labs can be an important, if not essential, contribution to realizing the lofty goals of the SDGs and the Green Deal as they relate to agriculture.

Publisher

Copernicus GmbH

Subject

Soil Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3