Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes

Author:

Xian PengORCID,Zhang JianglongORCID,O'Neill Norm T.,Reid Jeffrey S.,Toth Travis D.,Sorenson Blake,Hyer Edward J.ORCID,Campbell James R.ORCID,Ranjbar KeyvanORCID

Abstract

Abstract. In a companion paper (Xian et al., 2022, part 1 of the study), we present an Arctic aerosol optical depth (AOD) climatology and trend analysis for 2003–2019 spring and summertime periods derived from a combination of aerosol reanalyses, remote-sensing retrievals, and ground observations. Continued from the previous discussion and as the second part of the study, we report the statistics and trends of Arctic AOD extreme events using the U.S. Navy Aerosol Analysis and Prediction System ReAnalysis version 1 (NAAPS-RA v1), the sun photometer data from the AErosol RObotic NETwork (AERONET) sites, and the oceanic Maritime Aerosol Network (MAN) measurements. Here, extreme AOD events are defined as events with AOD exceeding the 95th percentile (denoted “AOD95”) of AOD distributions for given locations using 6-hourly or daily AOD data. While AERONET and MAN data estimate the Arctic median 550 nm AOD value to be 0.07, the 95th percentile value is 0.24. Such extreme events are dominated by fine-mode aerosol particles, largely attributable to biomass burning (BB) smoke events for the North American Arctic, the Asian Arctic, and most areas of the Arctic Ocean. However, extreme AOD events for the lower European Arctic are more attributable to anthropogenic and biogenic fine particles. The extreme-event occurrence dominance of sea salt is largely limited to the North Atlantic and Norwegian Sea. The extreme AOD amplitudes of anthropogenic and biogenic fine-mode and sea salt AOD are, however, significantly lower than those regions where extreme smoke AOD is dominant. Even for sites distant from BB source regions, BB smoke is the principal driver of AOD variation above the AOD95 threshold. Maximum AOD values in the high Arctic in 2010–2019 have increased compared to 2003–2009, indicating stronger extreme BB smoke influence in more recent years. The occurrence of extreme smoke events tended to be more equally distributed over all months (April–August) during the 2003–2009 period while being more concentrated in the late season (July–August) during the 2010–2019 period. The temporal shift of the occurrence of AOD extreme events is likely due to improved control of early-season agriculture burning, climate-change-related increases in summertime lightning frequencies, and a reduction in anthropogenic pollution over the 2010–2019 period.

Funder

Goddard Earth Sciences

Office of Naval Research

Canadian Space Agency

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference103 articles.

1. AboEl-Fetouh, Y., O'Neill, N. T., Ranjbar, K., Hesaraki, S., Abboud, I., and Sobolewski, P. S.: Climatological-scale analysis of intensive and semi-intensive aerosol parameters derived from AERONET retrievals over the Arctic, J. Geophys. Res.-Atmos., 125, e2019JD031569, https://doi.org/10.1029/2019JD031569, 2020.

2. AboEl-Fetouh, Y., O'Neill, N. T., Kodros, J. K., Pierce, J. R., Lu, H., Ranjbar, K., and Xian, P.: Seasonal comparisons of GEOS-Chem-TOMAS (GCT) simulations with AERONET-inversion retrievals over sites in the North American and European Arctic, Atmos. Environ., 271, 118852, https://doi.org/10.1016/j.atmosenv.2021.118852, 2022.

3. Balzter, H., Gerard. F., George. C., Weedon, G., Grey, W., Combal, B., Bartholome, E., Bartalev, S., and Los, S.: Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and east Siberia, J. Climate, 20, 3713–3729, https://doi.org/10.1175/JCLI4226, 2007.

4. Bieniek, P. A., Bhatt, U. S., York, A., Walsh, J. E., Lader, R., Strader, H., Ziel, R., Jandt, R. R., and Thoman, R. L.: Lightning Variability in Dynamically Downscaled Simulations of Alaska's Present and Future Summer Climate, J. Appl. Meteorol. Climatol., 59, 1139–1152, 2020.

5. Birch, C. E., Brooks, I. M., Tjernström, M., Shupe, M. D., Mauritsen, T., Sedlar, J., Lock, A. P., Earnshaw, P., Persson, P. O. G., Milton, S. F., and Leck, C.: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies, Atmos. Chem. Phys., 12, 3419–3435, https://doi.org/10.5194/acp-12-3419-2012, 2012.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3