Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding

Author:

Clare Mariana C. A.,Leijnse Tim W. B.ORCID,McCall Robert T.,Diermanse Ferdinand L. M.,Cotter Colin J.,Piggott Matthew D.

Abstract

Abstract. When choosing an appropriate hydrodynamic model, there is always a compromise between accuracy and computational cost, with high-fidelity models being more expensive than low-fidelity ones. However, when assessing uncertainty, we can use a multifidelity approach to take advantage of the accuracy of high-fidelity models and the computational efficiency of low-fidelity models. Here, we apply the multilevel multifidelity Monte Carlo method (MLMF) to quantify uncertainty by computing statistical estimators of key output variables with respect to uncertain input data, using the high-fidelity hydrodynamic model XBeach and the lower-fidelity coastal flooding model SFINCS (Super-Fast INundation of CoastS). The multilevel aspect opens up the further advantageous possibility of applying each of these models at multiple resolutions. This work represents the first application of MLMF in the coastal zone and one of its first applications in any field. For both idealised and real-world test cases, MLMF can significantly reduce computational cost for the same accuracy compared to both the standard Monte Carlo method and to a multilevel approach utilising only a single model (the multilevel Monte Carlo method). In particular, here we demonstrate using the case of Myrtle Beach, South Carolina, USA, that this improvement in computational efficiency allows for in-depth uncertainty analysis to be conducted in the case of real-world coastal environments – a task that would previously have been practically unfeasible. Moreover, for the first time, we show how an inverse transform sampling technique can be used to accurately estimate the cumulative distribution function (CDF) of variables from the MLMF outputs. MLMF-based estimates of the expectations and the CDFs of the variables of interest are of significant value to decision makers when assessing uncertainty in predictions.

Funder

Engineering and Physical Sciences Research Council

Deltares

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3