Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation

Author:

Pianezze JorisORCID,Beuvier Jonathan,Lebeaupin Brossier CindyORCID,Samson GuillaumeORCID,Faure Ghislain,Garric Gilles

Abstract

Abstract. To improve high-resolution numerical environmental prediction, it is essential to represent ocean–atmosphere interactions properly, which is not the case in current operational regional forecasting systems used in western Europe. The objective of this paper is to present a new forecast-oriented coupled ocean–atmosphere system. This system uses the state-of-the-art numerical models AROME (cy43t2) and NEMO (v3.6) with a horizontal resolution of 2.5 km. The OASIS coupler (OASIS3MCT-4.0), implemented in the SurfEX surface scheme and in NEMO, is used to perform the communications between models. A sensitivity study of this system is carried out using 7 d simulations from 12 to 19 October 2018, characterized by extreme weather events (storms and heavy precipitation) in the area of interest. Comparisons with in situ and L3 satellite observations show that the fully coupled simulation reproduces the spatial and temporal evolution of the sea surface temperature and 10 m wind speed quantitatively well. Sensitivity analysis of ocean–atmosphere coupling shows that the use of an interactive and high-resolution sea surface temperature (SST), in contrast to actual numerical weather prediction (NWP) where SST is constant, modifies the atmospheric circulation and the location of heavy precipitation. Simulated oceanic fields show a large sensitivity to coupling when compared to the operational ocean forecast. The comparison to two distinct forced ocean simulations highlights that this sensitivity is mainly controlled by the change in the atmospheric model used to drive NEMO (AROME vs. IFS operational forecast), and less by the interactive air–sea exchanges. In particular, the oceanic boundary layer depths can vary by more than 40  % locally, between the two ocean-only experiments. This impact is amplified by the interactive coupling and is attributed to positive feedback between sea surface cooling and evaporation.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3