Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment

Author:

Balke T.,Bouma T. J.,Herman P. M. J.,Horstman E. M.,Sudtongkong C.,Webb E. L.

Abstract

Abstract. Mangroves may grow in an active sedimentary environment and are therefore closely linked to physical coastal processes. Seedlings colonize dynamic tidal flats, after which mangroves have the potential to change their physical environment by attenuating hydrodynamic energy and trapping sediments. Disturbance from hydrodynamic energy of waves or currents and the resulting sediment dynamics appear to be a critical bottleneck for seedling establishment on tidal flats and at the forest fringe. However, knowledge about the mechanisms at the single plant level and the spatial pattern of disturbance is limited. By means of a flume study, we demonstrate that a surface erosion threshold of as little as 1–3 cm depth can lead to failure of young seedlings. By monitoring accretion/erosion for 8 months along cross-shore transects in southwest Thailand, we show that, especially on the bare mudflat, the physical sediment disturbance regularly exceeds the critical erosion thresholds derived from the flume study. Physical sediment parameters along the same transects were analysed to deduct patterns of hydrodynamic energy attenuation. Grain size analysis and erosion/accretion data showed only limited energy dissipation within the fringing Avicennia/Sonneratia zone; sediment dynamics only dropped below lethal values for seedlings within the denser Rhizophora zone. Overall, present results emphasize that (i) seedling survival is extremely sensitive to physically driven sediment dynamics and (ii) that such physical disturbances are not only present on the tidal flats but can penetrate a significant distance into the forest. Spatio-temporal patterns in sediment dynamics should hence be considered when conducting restoration of mangrove ecosystems.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3