H<sub>2</sub>SO<sub>4</sub> and particle production in a photolytic flow reactor: chemical modeling, cluster thermodynamics and contamination issues
-
Published:2019-07-17
Issue:14
Volume:19
Page:8999-9015
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Hanson David R., Abdullahi Hussein, Menheer Seakh, Vences Joaquin, Alves Michael R.ORCID, Kunz Joan
Abstract
Abstract. Size distributions of particles formed from sulfuric acid
(H2SO4) and water vapor in a photolytic flow reactor (PhoFR) were
measured with a nanoparticle mobility sizing system. Experiments with added
ammonia and dimethylamine were also performed. H2SO4(g) was
synthesized from HONO, sulfur dioxide and water vapor, initiating OH
oxidation by HONO photolysis. Experiments were performed at 296 K over a
range of sulfuric acid production levels and for 16 % to 82 % relative
humidity. Measured distributions generally had a large-particle mode that
was roughly lognormal; mean diameters ranged from 3 to 12 nm and widths
(lnσ) were ∼0.3. Particle formation conditions were
stable over many months. Addition of single-digit pmol mol−1 mixing ratios of
dimethylamine led to very large increases in particle number density.
Particles produced with ammonia, even at 2000 pmol mol−1, showed that NH3
is a much less effective nucleator than dimethylamine. A two-dimensional
simulation of particle formation in PhoFR is also presented that starts with
gas-phase photolytic production of H2SO4, followed by kinetic
formation of molecular clusters and their decomposition, which is determined by their
thermodynamics. Comparisons with model predictions of the experimental
result's dependency on HONO and water vapor concentrations yield
phenomenological cluster thermodynamics and help delineate the effects of
potential contaminants. The added-base simulations and experimental results
provide support for previously published dimethylamine–H2SO4
cluster thermodynamics and provide a phenomenological set of
ammonia–sulfuric acid thermodynamics.
Funder
Directorate for Geosciences
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference52 articles.
1. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C.,
Franchin, A., Guida, R., Hakala, J., Hansel, A.,<span id="page9013"/> Heinritzi, M., Henschel,
H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H.,
Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K.,
Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S.,
McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T.,
Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos,
F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H.,
Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A.,
Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen,
A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C.,
Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J.,
Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.:
Molecular understanding of sulphuric acid-amine particle nucleation in the
atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663,
2013. 2. Ball, S. M., Hanson, D. R., Eisele, F. L., and McMurry, P. H.: Laboratory
Studies of Particle Nucleation – Initial Results for H2SO4,
H2O, and NH3 Vapors, J. Geophys. Res., 104, 718–723, 1999. 3. Benson, D. R., Erupe, M. E., and Lee, S.-H.: Laboratory-measured
H2SO4, NH3, H2O ternary homogeneous nucleation rates:
Initial observations, Geophys. Res. Lett. 36, L15818, https://doi.org/10.1029/2009GL038728, 2009. 4. Benson, D. R., Yu, J. H., Markovich, A., and Lee, S.-H.: Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere, Atmos. Chem. Phys., 11, 4755–4766, https://doi.org/10.5194/acp-11-4755-2011, 2011. 5. Berndt, T., Stratmann, F., Bräsel, S., Heintzenberg, J., Laaksonen, A., and Kulmala, M.: SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 1: Laboratory investigations, Atmos. Chem. Phys., 8, 6365–6374, https://doi.org/10.5194/acp-8-6365-2008, 2008.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|