Field-aligned currents and ionospheric parameters deduced from EISCAT radar measurements in the post-midnight sector

Author:

Sugino M.,Fujii R.,Nozawa S.,Nagatsuma T.,Buchert S. C.,Gjerloev J. W.,Kosch M. J.

Abstract

Abstract. Attempting to derive the field-aligned current (FAC) density using the EISCAT radar and to understand the role of the ionosphere on closing FACs, we conducted special radar experiments with the EISCAT radar on 9 October 1999. In order to derive the gradient of the ionospheric conductivity (grad S) and the divergence of the electric field (div E) nearly simultaneously, a special experiment employed an EISCAT radar mode which let the transmitting antenna sequentially point to four directions within 10 min; two pairs of the four directions formed two orthogonal diagonals of a square.  Our analysis of the EISCAT radar data disclosed that SP div E and E · grad SP produced FACs with the same direction inside a stable broad arc around 05:00 MLT, when the EISCAT radar presumably crossed the boundary between the large-scale upward and downward current regions. In the most successfully observed case, in which the conductances and the electric field were spatially varying with little temporal variations, the contribution of SP div E was nearly twice as large as that of E · grad SP . On the other hand, the contribution of (b × E) · grad SH was small and not effective in closing FACs. The present EISCAT radar mode along with auroral images also enables us to focus on the temporal or spatial variation of high electric fields associated with auroral arcs. In the present experiment, the electric field associated with a stable arc was confined in a spatially restricted region, within ~ 100 km from the arc, with no distinct depletion of electron density. We also detected a region of the high arc-associated electric field, accompanied by the depletion of electron density above 110 km. Using auroral images, this region was identified as a dark spot with a spatial scale of over 150 × 150 km. The dark spot and the electron depletion were likely in existence for a limited time of a few minutes.Key words. Ionosphere (auroral ionosphere; electric fields and currents; particle precipitation)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3