Halo-coronal mass ejections near the 23rd solar minimum: lift-off, inner heliosphere, and in situ (1 AU) signatures

Author:

Berdichevsky D. B.,Farrugia C. J.,Thompson B. J.,Lepping R. P.,Reames D. V.,Kaiser M. L.,Steinberg J. T.,Plunkett S. P.,Michels D. J.

Abstract

Abstract. The extreme ultraviolet (EUV) signatures of a solar lift-off, decametric and kilometric radio burst emissions and energetic particle (EP) inner heliospheric signatures of an interplanetary shock, and in situ identification of its driver through solar wind observations are discussed for 12 isolated halo coronal mass ejections (H-CMEs) occurring between December 1996 and 1997. For the aforementioned twelve and the one event added in the discussion, it is found that ten passed several necessary conditions for being a "Sun-Earth connection". It is found that low corona EUV and Ha chromospheric signatures indicate filament eruption as the cause of H-CME. These signatures indicate that the 12 events can be divided into two major subsets, 7 related to active regions (ARs) and 5 unrelated or related to decayed AR. In the case of events related to AR, there is indication of a faster lift-off, while a more gradual lift-off appears to characterize the second set. Inner heliospheric signatures – the presence of long lasting enhanced energetic particle flux and/or kilometric type II radio bursts – of a driven shock were identified in half of the 12 events. The in situ (1 AU) analyses using five different solar wind ejecta signatures and comparisons with the bidirectional flow of suprathermal particles and Forbush decreases result in indications of a strong solar wind ejecta signatures for 11 out of 12 cases. From the discussion of these results, combined with work by other authors for overlapping events, we conclude that good Sun-Earth connection candidates originate most likely from solar filament eruptions with at least one of its extremities located closer to the central meridian than ~ 30° E or ~ 35° W with a larger extension in latitudinal location possible. In seven of the twelve cases it appears that the encountered ejecta was driving a shock at 1 AU. Support for this interpretation is found on the approximately equal velocity of the shock and the ejecta leading-edge. These shocks were weak to moderate in strength, and a comparison of their transit time with their local speed indicated a deceleration. In contradistinction with this result on shocks, the transit time versus the local speed of the ejecta appeared either to indicate that the ejecta as a whole traveled at constant speed or underwent a small amount of acceleration. This is a result that stands for cases with and without fast stream observations at their rear end. Seven out of twelve ejecta candidate intervals were themselves interplanetary magnetic cloud (IMC) or contained a previously identified IMC. As a by-product of this study, we noticed two good ejecta candidates at 1 AU for which observation of a H-CME or CME appears to be missing.Key words. Radio science (remote sensing); Solar physics, astrophysics and astronomy (flares and mass ejections); Space plasma physics (nonlinear phenomena)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3