Validation of routine continuous airborne CO<sub>2</sub> observations near the Bialystok Tall Tower
-
Published:2012-04-27
Issue:4
Volume:5
Page:873-889
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Chen H.,Winderlich J.,Gerbig C.,Katrynski K.,Jordan A.,Heimann M.
Abstract
Abstract. Since 2002 in situ airborne measurements of atmospheric CO2 mixing ratios have been performed regularly aboard a rental aircraft near Bialystok (53°08´ N, 23°09´ E), a city in northeastern Poland. Since August 2008, the in situ CO2 measurements have been made by a modified commercially available and fully automated non-dispersive infrared (NDIR) analyzer system. The response of the analyzer has been characterized and the CO2 mixing ratio stability of the associated calibration system has been fully tested, which results in an optimal calibration strategy and allows for an accuracy of the CO2 measurements within 0.2 ppm. Besides the in situ measurements, air samples have been collected in glass flasks and analyzed in the laboratory for CO2 and other trace gases. To validate the in situ CO2 measurements against reliable discrete flask measurements, we developed weighting functions that mimic the temporal averaging of the flask sampling process. Comparisons between in situ and flask CO2 measurements demonstrate that these weighting functions can compensate for atmospheric variability, and provide an effective method for validating airborne in situ CO2 measurements. In addition, we show the nine-year records of flask CO2 measurements. The new system, automated since August 2008, has eliminated the need for manual in-flight calibrations, and thus enables an additional vertical profile, 20 km away, to be sampled at no additional cost in terms of flight hours. This sampling strategy provides an opportunity to investigate both temporal and spatial variability on a regular basis.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference50 articles.
1. Anderson, B. E., Gregory, G. L., Collins, J. E., Sachse, G. W., Conway, T. J., and Whiting, G. P.: Airborne observations of spatial and temporal variability of tropospheric carbon dioxide, J. Geophys. Res.-Atmos., 101, 1985–1997, 1996. 2. Bakwin, P. S., Tans, P. P., Stephens, B. B., Wofsy, S. C., Gerbig, C., and Grainger, A.: Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling, J. Geophys. Res.-Atmos., 108, 4514, https://doi.org/10.1029/2002jd003306, 2003. 3. Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R.: Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange, Agr. Forest Meteorol., 118, 1–19, 2003. 4. Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W., Crosson, E. R., Van Pelt, A. D., Steinbach, J., Kolle, O., Beck, V., Daube, B. C., Gottlieb, E. W., Chow, V. Y., Santoni, G. W., and Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech., 3, 375–386, https://doi.org/10.5194/amt-3-375-2010, 2010. 5. Crevoisier, C., Sweeney, C., Gloor, M., Sarmiento, J. L., and Tans, P. P.: Regional US carbon sinks from three-dimensional atmospheric CO2 sampling, P. Natl. Acad. Sci. USA, 107, 18348–18353, https://doi.org/10.1073/pnas.0900062107, 2010.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|