Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest
-
Published:2017-12-22
Issue:24
Volume:14
Page:5775-5788
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Seitz SteffenORCID, Nebel Martin, Goebes PhilippORCID, Käppeler Kathrin, Schmidt Karsten, Shi Xuezheng, Song Zhengshan, Webber Carla L., Weber BettinaORCID, Scholten ThomasORCID
Abstract
Abstract. This study investigated the development of biological soil crusts (biocrusts) in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference112 articles.
1. Allen, C. D.: Biogeomorphology and biological soil crusts: a symbiotic research relationship, Geomorphologie, 16, 347–358, https://doi.org/10.4000/geomorphologie.8071, 2010. 2. Barnes, B. V. and Spurr, S. H.: Forest Ecology, 4th ed., Wiley, New York, 774 pp., 1998. 3. Beck, E., Hartig, K., Roos, K., Preußig, M., and Nebel, M.: Permanent removal of the forest: construction of roads and power supply lines, in: Gradients in a Tropical Mountain Ecosystem of Ecuador, edited by: Beck, E., Ecological Studies, vol. 198, Springer, Berlin, 361–370, 2008. 4. Behrens, T., Schmidt, K., and Scholten, T.: An approach to removing uncertainities in nominal environmental covariates and soil class maps, in: Digital Soil Mapping with Limited Data, edited by: Hartemink, A. E., McBratney, A. B., Mendonça-Santos, Maria de Lourdes, Springer, Dordrecht, London, 213–224, 2008. 5. Belnap, J.: The potential roles of biological soil crusts in dryland hydrologic cycles, Hydrol. Process., 20, 3159–3178, https://doi.org/10.1002/hyp.6325, 2006.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|